Loading...
Search for:
axonal-injury
0.005 seconds
Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model
, Article Computer Methods in Biomechanics and Biomedical Engineering ; 2021 ; 10255842 (ISSN) ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
Taylor and Francis Ltd
2021
Abstract
A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of...
A viscoelastic model for axonal microtubule rupture
, Article Journal of Biomechanics ; Volume 48, Issue 7 , 2015 , Pages 1241-1247 ; 00219290 (ISSN) ; Manuchehrfar, F ; Rafii Tabar, H ; Sharif University of Technology
Elsevier Ltd
2015
Abstract
Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during...
A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter
, Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
Springer
2020
Abstract
This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A...