Loading...
Search for: b--chemical-synthesi
0.007 seconds

    Novel silver nano-wedges for killing microorganisms

    , Article Materials Research Bulletin ; Volume 46, Issue 11 , 2011 , Pages 1860-1865 ; 00255408 (ISSN) Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    Abstract
    In the current study, for the first time, photochemical facile green synthesis of salep capped silver nano-wedges was reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent caused mild reduction of silver ions to the silver nano-wedges. Salep as an effective capping/shaping polysaccharide bioresource material was used in the reaction medium and caused creation of flower-like self-assembled structures of the silver nano-wedges. The formation of silver nano-wedges and their flower-like self-assembled structures was confirmed by SEM technique. Further investigations were carried out using UV-vis, FTIR, GPC and XRD data. The prepared silver nano-wedges... 

    A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: Embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode

    , Article Materials Research Bulletin ; Volume 72 , 2015 , Pages 64-69 ; 00255408 (ISSN) Shogh, S ; Mohammadpour, R ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Aggregated sub-micron size nitrogen doped TiO2 (N-TiO2) particles with superior optical and electrical features were successfully synthesized for embedding into commercial mesoporous TiO2 photoelectrode of dye sensitized solar cells (DSSCs) as the light scattering particles compared to undoped one. X-ray photoelectron spectroscopy and absorption spectra confirmed that the titanium dioxide is sufficiently doped by nitrogen in N-TiO2 sample. Employing these high-surface N-TiO2 in mesoporous photoelectrode of solar cells, the power conversion efficiency of 8% has been achieved which shows 17% improvement for the optimum embedded level of... 

    An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3586-3591 ; 00255408 (ISSN) Aminzare, M ; Amoozegar, Z ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The synthesis of nano-sized CeO 2 powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner-Emmett-Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce...