Loading...
Search for: bacterial-cell
0.004 seconds

    The Synthesis of Graphene-Nanobubbles and Investigation of their Potential Synergistic Effect on Bacterial Cells

    , Ph.D. Dissertation Sharif University of Technology Jannesari, Marziyeh (Author) ; Akhavan, Omid (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor) ; Bakhsi, Bita (Co-Supervisor)
    Abstract
    Recently, nanotechnology has promised to create and/ or improve therapeutic methods which in turn remain minimum side effects by employing synergistic effects of nanostructures. However, a comprehensive understanding of the interactions between nanostructures and building blocks of the biological systems (cells) is essential to create innovative therapeutic methods and compound and also predict their behavior for upcoming applications. In this thesis for the first time, synergistic effects of graphene-nanobubbles in interactions with bacterial (as the simplest model) cells were investigated. Therefore, at the first step, production of nanobubbles (NBs) in the presence of two-dimensional... 

    Optimum rice husk ash content and bacterial concentration in self-compacting concrete

    , Article Construction and Building Materials ; Volume 222 , 2019 , Pages 796-813 ; 09500618 (ISSN) Ameri, F ; Shoaei, P ; Bahrami, N ; Vaezi, M ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study is aimed at optimizing the rice husk ash (RHA) content and bacterial concentration in self-compacting concrete (SCC). For this purpose, cement was partially replaced with RHA at 0%, 5%, 10%, 15%, 20%, 25%, and 30% by weight of cement. In addition, micro-silica (MS) was added to all mixes at a dosage of 10% by weight of cementitious materials. The mix with the optimum RHA content was supplied with bacterial cells with concentrations of 103, 105, and 107 cells/ml to reduce the formation of micro-cracks. The RHA concretes showed reduced workability with increasing RHA content. Energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses were performed on... 

    Biological activated carbon process for biotransformation of azo dye Carmoisine by Klebsiella spp

    , Article Environmental Technology (United Kingdom) ; 2021 ; 09593330 (ISSN) Poorasadollah, D ; Bagheri Lotfabad, T ; Heydarinasab, A ; Yaghmaei, S ; Mohseni, F. A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The feasibility of employing the biological activated carbon (BAC) process to debilitate azo dye Carmoisine by Klebsiella spp. was investigated. Plate assay revealed the capability of Klebsiella spp. for removal of Carmoisine via degradation. Kinetic parameters were measured for Carmoisine debilitation by Klebsiella spp. using the suspended anaerobic process. Two types of granular and rod-shaped activated carbon were used to form the biological beds in order to study the Carmoisine debilitation in batch processes. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to indicate the colonization and biofilm formation of bacteria grown on activated carbon... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

    , Article Biomedical Optics Express ; Volume 6, Issue 1 , 2015 , Pages 112-117 ; 21567085 (ISSN) Samadi, A ; Zhang, C ; Chen, J ; Reihani, S. N. S ; Chen, Z ; Sharif University of Technology
    OSA - The Optical Society  2015
    Abstract
    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the “killing time” of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used... 

    Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste

    , Article Journal of Environmental Management ; Volume 261 , 2020 Arab, B ; Hassanpour, F ; Arshadi, M ; Yaghmaei, S ; Hamedi, J ; Sharif University of Technology
    Academic Press  2020
    Abstract
    In this study, indigenous cyanogenic bacterial strains were isolated on nutrient, minimal salt, and soil extract media at various culture conditions from two distinct landfills of e-waste, Iran. Based on their cyanide formation profiles, five most potent isolates were selected for optimization and to this end, the influence of the most effective factors on cyanide production including pH, glycine concentration and temperature were assessed using one-factor at a time method (OFAT). Initial pH of 7, glycine concentration of 2 g/L and temperature of 30°C were obtained as optimal conditions for most of the isolates. Additionally, two bioleaching processes were applied for each bacteria to detect... 

    Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 178 , 2018 , Pages 124-132 ; 10111344 (ISSN) Faraji, M ; Mohaghegh, N ; Abedini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A series of g-C3N4-SnO2/TiO2 nanotubes/Ti plates were fabricated via simple dipping of TiO2 nanotubes/Ti in a solution containing SnCl2 and g-C3N4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C3N4-SnO2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis... 

    Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency

    , Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) Kashanian, F ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is... 

    An efficient biosurfactant-producing bacterium pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 69, Issue 2 , 2009 , Pages 183-193 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Shourian, M ; Roostaazad, R ; Rouholamini Najafabadi, A ; Adelzadeh, M. R ; Akbari Noghabi, K ; Sharif University of Technology
    2009
    Abstract
    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in southern Iran. It was affiliated with Pseudomonas. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, MR01, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages lipid (∼65%, w/w) and carbohydrate (∼30%, w/w) in addition to a minor fraction of protein (∼4%, w/w). The best production of 2.1 g/l was obtained when the cells were grown on...