Loading...
Search for: bacterial-dna
0.005 seconds

    Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

    , Article PLoS ONE ; Volume 16, Issue 1 January 2021 , 2021 ; 19326203 (ISSN) Akbari Rokn Abadi, S ; Dijujin, N. H ; Koohi, S ; Sharif University of Technology
    Public Library of Science  2021
    Abstract
    In this study, optical technology is considered as SA issues’ solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome,... 

    Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

    , Article PLoS ONE ; Volume 16, Issue 1 , 2021 ; 19326203 (ISSN) Akbari Rokn Abadi, S ; Dijujin, N. H ; Koohi, S ; Sharif University of Technology
    Public Library of Science  2021
    Abstract
    In this study, optical technology is considered as SA issues’ solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome,... 

    Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons

    , Article Letters in Applied Microbiology ; Volume 45, Issue 6 , December , 2007 , Pages 622-628 ; 02668254 (ISSN) Zeinali, M ; Vossoughi, M ; Ardestani, S. K ; Sharif University of Technology
    2007
    Abstract
    Aims: Our goal was the characterization of a new moderate thermophilic polycyclic aromatic hydrocarbon (PAH)-utilizing Nocardia strain. Methods and Results: A thermophilic bacterium, strain TSH1, was isolated from a contaminated soil. The macroscopic and microscopic features fit well with the description of Nocardia species. The results of 16S rRNA gene analysis showed 100% match to the type strain of N. otitidiscaviarum DSM 43242T. Strain TSH1 showed the same mycolic acid pattern as the type strain of N. otitidiscaviarum but its fatty acid profile did not permit identification to the species level. The carbon utilization profile of strain TSH1 was different from N. otitidiscaviarum. The... 

    Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

    , Article Applied Microbiology and Biotechnology ; Volume 97, Issue 13 , July , 2013 , Pages 5979-5991 ; 01757598 (ISSN) Rabiei, A ; Sharifinik, M ; Niazi, A ; Hashemi, A ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC)... 

    Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain

    , Article Bioresource Technology ; Volume 101, Issue 3 , 2010 , Pages 1102-1105 ; 09608524 (ISSN) Davoodi Dehaghani, F ; Vosoughi, M ; Ziaee, A. A ; Sharif University of Technology
    2010
    Abstract
    A new dibenzothiophene (DBT) desulfurizing bacterium was isolated from oil-contaminated soils in Iran. HPLC analysis and PCR-based detection of the presence of the DBT desulfurization genes (dszA, dszB and dszC) indicate that this strain converts DBT to 2-hydroxybiphenyl (2-HBP) via the 4S pathway. The strain, identified as Rhodococcus erythropolis SHT87, can utilize DBT, dibenzothiophene sulfone, thiophene, 2-methylthiophene and dimethylsulfoxide as a sole sulfur source for growth at 30 °C. The maximum specific desulfurization activity of strain SHT87 resting cells in aqueous and biphasic organic-aqueous systems at 30 °C was determined to be 0.36 and 0.47 μmol 2-HBP min-1 (g dry cell)-1,...