Loading...
Search for: bacterial-strain
0.005 seconds

    Immobilization of Acidithiobacillus ferrooxidans on monolithic packing for biooxidation of ferrous iron

    , Article Iranian Journal of Biotechnology ; Volume 6, Issue 3 , 2008 , Pages 137-143 ; 17283043 (ISSN) Kahrizi, E ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    2008
    Abstract
    The oxidation of ferrous iron (Fe2+) in solution using Acidithiobacillus ferrooxidans has industrial applications exclusively in the regeneration of ferric iron (Fe3+) as an oxidizing agent for the removal of hydrogen sulfide from waste gases, desulfurization of coal, leaching of non-ferrous metallic sulfides and treatment of acid mine drainage. The aim of this investigation was to increase the bio-oxidation rate of ferrous sulfate by using immobilized cells. Rate of Fe2+ oxidation was determined in a packed-bed bioreactor configuration with monolithic particles being used as support material. Biooxidation of ferrous iron by immobilized cells was investigated in repeated batch culture and... 

    Investigating the effect of several auxiliary carbon sources in treatment of petroleum deposits by the bacterial strain BBRC9012

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Baghban, E ; Roostaazad, R ; Yaghmaei, S ; Sharif University of Technology
    2006
    Abstract
    Effect of several auxiliary carbon sources such as crude oil, different precultures, and quality of adding crude oil in treatment of petroleum wax deposits by an isolated bacterial strain, BBRC9012, was investigated. First and second experiments which compered effect of molasses, glucose and crude oil, indicated that glucose and molasses causes more microbial growth, biosurfactant production and bioemolsification than crude oil. Both optometry and Surface tension measurements showed that using molasses-BHB preculture for wax treatment is not suitable and when crude oil is used as auxiliary carbon source a one day lag phase is unavoidable. It was also shown that when crude oil is added to... 

    Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste

    , Article Journal of Environmental Management ; Volume 261 , 2020 Arab, B ; Hassanpour, F ; Arshadi, M ; Yaghmaei, S ; Hamedi, J ; Sharif University of Technology
    Academic Press  2020
    Abstract
    In this study, indigenous cyanogenic bacterial strains were isolated on nutrient, minimal salt, and soil extract media at various culture conditions from two distinct landfills of e-waste, Iran. Based on their cyanide formation profiles, five most potent isolates were selected for optimization and to this end, the influence of the most effective factors on cyanide production including pH, glycine concentration and temperature were assessed using one-factor at a time method (OFAT). Initial pH of 7, glycine concentration of 2 g/L and temperature of 30°C were obtained as optimal conditions for most of the isolates. Additionally, two bioleaching processes were applied for each bacteria to detect... 

    Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 82, Issue 1 , 2011 , Pages 33-39 ; 09277765 (ISSN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Soleimani, M ; Jamshidnejad, Z ; Sharif University of Technology
    Abstract
    The potential of an indigenous bacterial strain isolated from an Iranian oil field for the production of biosurfactant was investigated in this study. After isolation, the bacterium was characterized to be Paenibacillus alvei by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to lower the surface tension of media to 35. mN/m. Accordingly, thin layer chromatography (TLC) and FT-IR has been carried out to determine compositional analysis of the produced biosurfactant. After all the tests related to characterization of the biosurfactant produced by the isolated bacterium, it was characterized as lipopeptide derivative. The combination of... 

    A study of Acidithiobacillus Ferrooxidans DSMZ 583 Adaptation to Heavy Metals

    , Article Iranian Journal of Biotechnology ; Volume 9, Issue 2 , 2011 , Pages 133-144 ; 17283043 (ISSN) Yaghmaei, S ; Ghobadi, Z ; Sharif University of Technology
    2011
    Abstract
    In this study the ability of Acidithiobacillus ferrooxi-dans, with regard to the biorecovery of heavy metals in shake flask has been investigated. Adaptation experiments with the single metal ions Ni, Co, V, Mo, W and a mixture of the first four metal ions in the medium was developed through serial sub-culturing. Adaptation showed that A. ferrooxidans could tolerate up to 2.3 g/l Ni, 1.4 g/l Co, 1.4 g/l V, 0.045 g/l Mo and 0.005 g/l W, singly. In the presence of multi-metals considering a mixture of Ni-Co-V-Mo, the bacteria was able to tolerate up to 1.5 g/l Ni, 0.8 g/l Co, 0.8 g/l V and 0.05 g/l Mo in steps of 50-100 mg/l for Ni, Co and V, while for Mo and W with increments in concentration... 

    Response surface methodology as an approach to optimize growth medium of indigenous strain of Bacillus mycoides for production of biosurfactant

    , Article ICBEE 2010 - 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, Proceedings, 2 November 2010 through 4 November 2010 ; 2010 , Pages 146-152 ; 9781424487479 (ISBN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Soleimani, M ; Sharif University of Technology
    Abstract
    In this study, we have investigated the potential of a native bacterial strain isolated from an Iranian oil field for the production of biosurfactant. The bacterium was identified to be Bacillus mycoides by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to reduce the surface tension of media to 34 mN/m. Biosurfactant production was optimized by the combination of central composite design (CCD) and response surface methodology (RSM). The factor selected for optimization of growth conditions were pH, temperature, glucose and salinity concentrations. The empirical model developed through RSM in terms of effective operational factors... 

    Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus

    , Article Bioorganic Chemistry ; Volume 103 , October , 2020 Mirzaie, A ; Peirovi, N ; Akbarzadeh, I ; Moghtaderi, M ; Heidari, F ; Yeganeh, F. E ; Noorbazargan, H ; Mirzazadeh, S ; Bakhtiari, R ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Ciprofloxacin is an alternative to vancomycin for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to optimization of niosomes encapsulated ciprofloxacin and evaluate their antibacterial and anti-biofilm efficacies against ciprofloxacin-resistant methicillin-resistant S. aureus (CR-MRSA) strains. Formulation of niosomes encapsulated ciprofloxacin were optimized by changing the proportions of Tween 60, Span 60, and cholesterol. The optimized ciprofloxacin encapsulated niosomal formulations based on Span 60 and Tween 60 were prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and... 

    An efficient biosurfactant-producing bacterium pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 69, Issue 2 , 2009 , Pages 183-193 ; 09277765 (ISSN) Bagheri Lotfabad, T ; Shourian, M ; Roostaazad, R ; Rouholamini Najafabadi, A ; Adelzadeh, M. R ; Akbari Noghabi, K ; Sharif University of Technology
    2009
    Abstract
    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in southern Iran. It was affiliated with Pseudomonas. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, MR01, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages lipid (∼65%, w/w) and carbohydrate (∼30%, w/w) in addition to a minor fraction of protein (∼4%, w/w). The best production of 2.1 g/l was obtained when the cells were grown on... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Optimization of operating parameters for efficient photocatalytic inactivation of Escherichia coli based on a statistical design of experiments

    , Article Water Science and Technology ; Volume 71, Issue 6 , 2015 , Pages 823-831 ; 02731223 (ISSN) Feilizadeh, M ; Alemzadeh, I ; Delparish, A ; Karimi Estahbanati, M. R ; Soleimani, M ; Jangjou, Y ; Vosoughi, A ; Sharif University of Technology
    IWA Publishing  2015
    Abstract
    In this work, the individual and interaction effects of three key operating parameters of the photocatalytic disinfection process were evaluated and optimized using response surface methodology (RSM) for the first time. The chosen operating parameters were: reaction temperature, initial pH of the reaction mixture and TiO2 P-25 photocatalyst loading. Escherichia coli concentration, after 90 minutes irradiation of UV-A light, was selected as the response. Twenty sets of photocatalytic disinfection experiments were conducted by adjusting operating parameters at five levels using the central composite design. Based on the experimental data, a semi-empirical expression was established and applied... 

    Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology

    , Article Chemical Engineering Journal ; Volume 163, Issue 3 , October , 2010 , Pages 188-194 ; 13858947 (ISSN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Ghobadi, Z ; Sharif University of Technology
    2010
    Abstract
    In this study, we have investigated the potential of a native bacterial strain isolated from an Iranian oil field for the production of biosurfactant. The bacterium was identified to be Bacillus mycoides by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to reduce the surface tension of media to 34. mN/m. Compositional analysis of the produced biosurfactant has been carried out by thin layer chromatography (TLC) and FT-IR. The biosurfactant produced by the isolate was characterized as lipopeptide derivative. Biosurfactant production was optimized by the combination of central composite design (CCD) and response surface methodology... 

    Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode

    , Article Biosensors and Bioelectronics ; Volume 79 , 2016 , Pages 327-333 ; 09565663 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104Wm-3 was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of... 

    Study potential of indigenous pseudomonas aeruginosa and bacillus subtilis in bioremediation of diesel-contaminated water

    , Article Water, Air, and Soil Pollution ; Volume 228, Issue 1 , 2017 ; 00496979 (ISSN) Safdari, M. S ; Kariminia, H. R ; Ghobadi Nejad, Z ; Fletcher, T. H ; Sharif University of Technology
    Abstract
    Petroleum products which are used in a wide variety of industries as energy sources and raw materials have become a major concern in pollution of terrestrial and marine environments. The purpose of this study was to assess the potential of indigenous microbial isolates for degradation of diesel fuel. Two most proficient bacterial strains among five isolated strains from polluted soil of an industrial refinery were studied. The isolates then were identified as Pseudomonas aeruginosa and Bacillus subtilis using biochemical tests and 16S rRNA gene sequence analyses. P. aeruginosa showed higher biodegradation efficiency than B. subtilis in shaking flask containing diesel-contaminated water. P.... 

    Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons

    , Article Letters in Applied Microbiology ; Volume 45, Issue 6 , December , 2007 , Pages 622-628 ; 02668254 (ISSN) Zeinali, M ; Vossoughi, M ; Ardestani, S. K ; Sharif University of Technology
    2007
    Abstract
    Aims: Our goal was the characterization of a new moderate thermophilic polycyclic aromatic hydrocarbon (PAH)-utilizing Nocardia strain. Methods and Results: A thermophilic bacterium, strain TSH1, was isolated from a contaminated soil. The macroscopic and microscopic features fit well with the description of Nocardia species. The results of 16S rRNA gene analysis showed 100% match to the type strain of N. otitidiscaviarum DSM 43242T. Strain TSH1 showed the same mycolic acid pattern as the type strain of N. otitidiscaviarum but its fatty acid profile did not permit identification to the species level. The carbon utilization profile of strain TSH1 was different from N. otitidiscaviarum. The... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium

    , Article Journal of Applied Microbiology ; Volume 105, Issue 2 , 11 July , 2008 , Pages 398-406 ; 13645072 (ISSN) Zeinali, M ; Vossoughi, M ; Ardestani, S. K ; Sharif University of Technology
    2008
    Abstract
    Aims: The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined. Methods and Results: When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2′-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o-hydroxyphenylacetic acid, benzoic acid, a phenanthrene... 

    Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: Enhancement of di-rhamnolipid proportion using gamma irradiation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 81, Issue 2 , 2010 , Pages 397-405 ; 09277765 (ISSN) Lotfabad, T. B ; Abassi, H ; Ahmadkhaniha, R ; Roostaazad, R ; Masoomi, F ; Zahiri, H. S ; Ahmadian, G ; Vali, H ; Noghabi, K. A ; Sharif University of Technology
    2010
    Abstract
    We previously reported that MR01, an indigenous strain of Pseudomonas aeruginosa, was able to produce a rhamnolipid-type biosurfactant. Here, we attempted to define the structural properties of this natural product. The analysis of the extracted biosurfactant by thin-layer chromatography (TLC) revealed the presence of two compounds corresponding to those of authentic mono- and di-rhamnolipid. The identity of two structurally distinguished rhamnolipids was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Liquid chromatography/mass spectrometry (LC/MS) of extracted biosurfactant revealed up to seventeen different rhamnolipid congeners. Further quantification showed... 

    Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil

    , Article Functional and Integrative Genomics ; Volume 18, Issue 5 , 2018 , Pages 533-543 ; 1438793X (ISSN) Rahimi, T ; Niazi, A ; Deihimi, T ; Taghavi, S. M ; Ayatollahi, S ; Ebrahimie, E ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    One of the main challenges in elimination of oil contamination from polluted environments is improvement of biodegradation by highly efficient microorganisms. Bacillus subtilis MJ01 has been evaluated as a new resource for producing biosurfactant compounds. This bacterium, which produces surfactin, is able to enhance bio-accessibility to oil hydrocarbons in contaminated soils. The genome of B. subtilis MJ01 was sequenced and assembled by PacBio RS sequencing technology. One big contig with a length of 4,108,293 bp without any gap was assembled. Genome annotation and prediction of gene showed that MJ01 genome is very similar to B. subtilis spizizenii TU-B-10 (95% similarity). The comparison...