Loading...
Search for: battery-pack
0.009 seconds

    Optimization of 18650 Cells Arrangement in Tesla Battery Pack with Active, Passive and Hybrid Cooling Systems

    , M.Sc. Thesis Sharif University of Technology Shamekhi, Alireza (Author) ; Aryanpour, Masoud (Supervisor)
    Abstract
    In this study, three active, passive, and hybrid thermal management systems are applied to a lithium battery module with industrial specifications, i.e., Tesla battery module, and the optimal conditions are extracted. The thermal and electrochemical behavior of battery cells is modeled using the quasi-two-dimensional approach by Newman’s method. The effects of inter-cellular distance on the maximum temperature and on the temperature distribution in the pack as the target variables are thoroughly investigated. A suitable range for the above distances is then determined in order to reduce the overall cooling power and the expected thermal performance of the pack. The results of temperature... 

    Optimization of Multi-Layered PCM Arrangement for Battery 18650 Thermal Management

    , M.Sc. Thesis Sharif University of Technology Pakravan, Shayan (Author) ; Aryanpour, Masoud (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Abstract
    Lithium-ion batteries have the ability to store a significant amount of energy and work at high power, which has led to the wide spread of their use in various industries. In high-power applications, battery heat management increases lifespan, safety, and reduces battery power loss. In this study, the heat management of a very common and widely used 18650 battery using multi-layered phase change material has been investigated. The reason for using multiple layers is that each phase change material has its own weaknesses in addition to its advantages. It is expected that with the proper use of several phase change materials in the thermal management system, the materials will reduce the... 

    Performance analysis of the lithium-ion battery RC equivalent circuit model using EPA drive cycles

    , Article 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2022, 1 February 2022 through 3 February 2022 ; 2022 , Pages 393-397 ; 9781665420433 (ISBN) Larijani, M.R ; Zolghadri, M ; Kia, S. H ; El Hajjaji, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper compares the dynamic and static models of a Lithium-ion battery pack with its electrochemical model as energy storage of an electric vehicle according to the environmental protection agency drive cycles. The dynamic model or the RC equivalent circuit includes a voltage source and double parallel resistor and capacitor networks which are connected in series. The static model includes a voltage source and resistors. Given drive cycles, these models are compared in terms of the battery voltage, state-of-charge, and power loss in an electric vehicle in MapleSim software. Although the state-of-charge and power loss of both models are identical to each other, actually the terminal...