Loading...
Search for: beam-column
0.005 seconds
Total 25 records

    Cyclic loading response of simple moment-resisting precast concrete beam-column connection

    , Article ACI Structural Journal ; Volume 100, Issue 4 , 2003 , Pages 440-445 ; 08893241 (ISSN) Khaloo, A. R ; Parastesh, H ; Sharif University of Technology
    2003
    Abstract
    In this study, test results of four precast concrete beam-column connections and one monolithic concrete connection are presented. The tests constituted the second phase of an experimental program on a 2/5-scale model precast connection. The objective of the test program was to design a simple moment-resisting precast connection for regions of high seismicity. The connection transfers bending moment by a combination of lap-splicing and end anchorage of bars. The end portions of precast beams sit on the column bearing area at the beginning of subassemblage construction. The variables examined were the level of axial load on column, spacing of beam stirrups in the connection length region,... 

    A novel concept for a deformable joint in offshore structures

    , Article Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Oslo, 23 June 2002 through 28 June 2002 ; Volume 1 , 2002 , Pages 503-511 Khonsari, S. V ; England, G. L ; Mahboub-Farimani, M. R ; ASME ; Sharif University of Technology
    2002
    Abstract
    A new semi-rigid beam-to-column, as well as bracing-to-frame, connection has been developed. In addition to its application in building structures, due to its special features and characteristics, it can best lend itself to offshore jackets, where fracture caused by fatigue has always been a major concern. The adverse effects of welding, material embrittlement, residual stresses, etc., pronounced by cyclic loading on such structures, can be overcome by using this new connection. Moreover, it can be easily used in the structure of various modules used in the topside of platforms and FPSOs. The particular feature of this connection is its geometry, which is so devised that it allows much... 

    Innovative structural joint tolerates high rotational and shear overload

    , Article 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, 20 June 2004 through 25 June 2004 ; Volume 1 B , 2004 , Pages 875-883 Khonsari, S. V ; Parvinnia, S. M. H ; England, G. L ; Hajialiakbari Fini, E ; Sharif University of Technology
    2004
    Abstract
    A new beam-to-column and bracing-to-frame connection that can tolerate high rotational and shear overload is described. The connection is a self-contained separate entity that comprises two parallel attachment plates between which two circular tubes are laid and fixed through welding. The whole combination can also be produced by extrusion, where the plates are laid in an orthogonal relation with the axis of bending. In the welded version, the two plates are laid in a parallel relation with the axis of bending  

    Further investigation into a novel concept for a deformable joint in offshore structures

    , Article 22nd International Conference on Offshore Mechanics and Arctic Engineering; Offshore Technology Ocean Space Utilization, Cancun, 8 June 2003 through 13 June 2003 ; Volume 1 , 2003 , Pages 479-487 Khonsari, S. V ; England, G. L ; Parvinnia, S. M. H ; Sharif University of Technology
    2003
    Abstract
    A new general semi-rigid beam-to-column connection for skeletal structures, also applicable to offshore platforms, was devised. In a previous paper (OMAE02-28264), the general features of this joint together with some proposed details for its use in fabricating new platforms, as well as retrofitting and repair of existing platforms, were introduced. Moreover, the results of some quasi-static tests on the 'original' version of the connection, in which the energy-dissipating elements (tubes) of the connection are laid in a parallel relation to the axis of bending, were reported. Here, in this paper, the results of recent experimental work on the 'alternate' version of the connection, in which... 

    Seismic performance of reduced web section moment connections

    , Article International Journal of Steel Structures ; Volume 17, Issue 2 , 2017 , Pages 413-425 ; 15982351 (ISSN) Momenzadeh, S ; Kazemi, M. T ; Hoseinzade Asl, M ; Sharif University of Technology
    Korean Society of Steel Construction  2017
    Abstract
    Seismic behavior of beam-to-column connections can be improved by shifting the location of inelasticity away from the column’s face. Such connections can be achieved by reducing the flange area at a specific distance from the beam-column connection, called reduced beam section (RBS), or by reducing web area by introducing a perforation into the web, called reduced web section (RWS). This paper presents a parametric study that is carried out on the effect of the perforation size, perforation location, and the beam span length in the RWS connections, using finite element modeling. Next, an interaction formula is derived for design purposes, and a step by step design method is developed.... 

    A remedy to gradient type constraint dilemma encountered in RKPM

    , Article Advances in Engineering Software ; Volume 38, Issue 4 , 2007 , Pages 229-243 ; 09659978 (ISSN) Shodja, H. M ; Hashemian, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    A major disadvantage of conventional meshless methods as compared to finite element method (FEM) is their weak performance in dealing with constraints. To overcome this difficulty, the penalty and Lagrange multiplier methods have been proposed in the literature. In the penalty method, constraints cannot be enforced exactly. On the other hand, the method of Lagrange multiplier leads to an ill-conditioned matrix which is not positive definite. The aim of this paper is to boost the effectiveness of the conventional reproducing kernel particle method (RKPM) in handling those types of constraints which specify the field variable and its gradient(s) conveniently. Insertion of the gradient term(s),... 

    Seismic rehabilitation of exterior RC beam-column joints using steel plates, angles, and posttensioning rods

    , Article Journal of Performance of Constructed Facilities ; Volume 30, Issue 1 , 2016 ; 08873828 (ISSN) Arzeytoon, A ; Hosseini, A ; Goudarzi, A ; Sharif University of Technology
    American Society of Civil Engineers (ASCE) 
    Abstract
    The presented studies have been conducted on the scope and magnitude of damages inflicted by earthquakes over the years. Many RC buildings, designed and constructed in the 1960s and 1970s, have serious structural deficiencies, especially in their beam-column joints. Such deficiencies result from inadequate joint shear strength or confinement of column reinforcement. The joints require elaborate retrofit measures to ensure the performances comparable to those of new designed structures. In this research, a new seismic retrofitting method is presented for beam-column joints based on the two-dimensional enlargement of the joint by using steel plate, angles, and posttensioning rods. The seismic... 

    Response of a novel beam-to-column connection to monotonic and cyclic flexural loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9 June 2008 through 13 June 2008, Berlin ; Volume 2 , 2008 , Pages 599-608 ; 9780791848197 (ISBN) Khonsari, S. V ; England, G. L ; Shahsavar Gargari, M ; Parvinnia, M. H ; Sharif University of Technology
    2008
    Abstract
    A new beam-to-column joint with high rotational as well as shear deformation capacity was devised. This high rotational 'capacity' is required to fulfill the great 'demand' for rotation arising during earthquakes, severe waves and current loads, etc. Due to its ability to contain damage during an overload, it leaves the connected elements intact. This, together with its replaceability can reduce the cost of post-event repair substantially. Its bending as well as shear performance under "monotonie" loading had already been assessed experimentally (OMAE'02-28864, OMAE'03-37292, OMAE'04-51494 & OMAE'05-6736l) and proved well superior to that of conventional joints. In order to study its... 

    Parametric Investigation of Behavior of Moment Connections to CFST Columns

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Mostafa (Author) ; Khalu, Alireza (Supervisor)
    Abstract
    In recent years use of concrete filled steel tube column structures has been increased due to their several advantages. In these columns the steel tube provides confinement for the concrete core of the column, so it increases axial strength and flexibility of the concrete core, and prevents spalling of the concrete. On the other hand the concrete core delays the local buckling steel tube and increases its bearing capacity. In addition, these columns have higher stiffness and strength than typical concrete columns due to placement of steel in farthest point of column cross section. The steel tube besides its structural role acts as framework for the concrete core and reduces time and cost of... 

    Analyzing and Modeling of Semi-hinged Connections in Steel Structure

    , M.Sc. Thesis Sharif University of Technology Haji kazemi, Mohsen (Author) ; Mofid, Massoud (Supervisor)
    Abstract
    Double angle connections, which are welded to the beam web and bolted to the column flange, are usually used to make hinged or semi-hinged connections. Several models are presented in this study whose geometrical properties are different. The finite element software package is used to develop the finite element analysis of the connections. An analytical method is presented that can be used to determine the behavior and deformation for this type of connection. The correctness of Moment-rotation curves of finite element analysis for each connection has been ascertained by comparison, using analytical technique; and a very good agreement has been obtained  

    Cyclic Behavior of Interior Reinforced Concrete Beam-column Connection with Self-consolidating

    , Ph.D. Dissertation Sharif University of Technology Salehi Mobin, Jalal (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    A significant amount of research in self-consolidating concrete technology is being placed in evaluating the suitability of the material for use in structural applications. However, research is needed to confirm the ability of self-consolidating concrete structural elements to adequately resist vertical and lateral loads. In a reinforced concrete building subjected to earthquake type loading, the beam to column connections constitute one of the critical regions and they must be designed and detailed to dissipate large amounts of energy without a significant loss of stiffness or strength. In the experimental part of this study, four full size interior beam-column subassemblages with 3.0 m... 

    Cyclic behaviour of interior reinforced concrete beam-column connection with self-consolidating concrete

    , Article Structural Concrete ; Volume 17, Issue 4 , 2016 , Pages 618-629 ; 14644177 (ISSN) Salehi Mobin, J ; Kazemi, M. T ; Attari, N. K. A ; Sharif University of Technology
    Wiley-Blackwell 
    Abstract
    A significant amount of research on self-consolidating concrete (SCC) technology has been devoted to evaluating the suitability of the material for its use in structural applications. However, more research is required to confirm the adequacy of SCC structural members for resisting gravity and seismic loads. This study focuses on the experimental investigation of the seismic performance of interior reinforced concrete beam-column connections with SCC. Four beam-column connection specimens, three with SCC and one with normally vibrated concrete (NC), were designed for this experimental study. Factors such as concrete type (SCC or NC) and axial load ratio (0, 7.5 and 15 % of column section... 

    Mixed shear-flexural (VM) hinge element and its applications

    , Article Scientia Iranica ; Volume 14, Issue 3 , 2007 , Pages 193-204 ; 10263098 (ISSN) Kazemi, M. T ; Erfani, S ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    In the present paper, a mixed, shear-flexural (VM) hinge element, with zero or nonzero length, for using in frames, has been introduced, where shear-flexural interaction has been considered. The element has the capability of modeling flexural yielding, shear yielding and their interaction in frames, subjected to all kinds of monotonic or cyclic loadings. The inelastic shear and flexural deformations and tangential stiffnesses are considered by using the multi-surfaces approach with dissimilar yield surfaces and by a stiffness matrix with nonzero off-diagonal components. A new kinematics hardening rule and, also, a new non-associated flow rule are introduced. The mixed hinge element can be... 

    A new concept in joining diagonal bracings to horizontal ones

    , Article 24th International Conference on Offshore Mechanics and Arctic Engineering, 2005, Halkidiki, 12 June 2005 through 17 June 2005 ; Volume 1 B , 2005 , Pages 699-705 Khonsari, S. V ; England, G. L ; Joeafshan Vishkaie, B ; Sharif University of Technology
    2005
    Abstract
    A new 'universal' structural joint with multiple applications was devised. Its application as a 'beam-to-column joint' was already investigated experimentally, and proven to be promising. The results were reported in previous OMAE conferences and elsewhere. Another fruitful application conceived for this joint is in the context of joining (diagonal) braces to the frame members of a structure. In particular, in chevron (inverted V) bracing systems, where the dominating exchanged forces between the combined diagonal braces and the horizontal brace (beam) are 'shear,' the use of the devised joint as a joining member can substantially improve the overall behaviour of the structure under dynamic... 

    Response of a novel beam-to-column/brace-to-frame connection to monotonic and cyclic shear loading

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 9 June 2008 through 13 June 2008, Berlin ; Volume 2 , 2008 , Pages 609-618 ; 9780791848197 (ISBN) Khonsari, V ; England, G. L ; Abazarsa, F ; Ocean, Offshore, and Arctic Engineering Division; ASME ; Sharif University of Technology
    2008
    Abstract
    A new universal structural joint was developed. While in bending it has a high rotational capacity, which can be accompanied by large bending stiffness and strength, in shear, it also has a very high shear deformation capacity, which can again be accompanied with large shear stiffness and strength. While the former characteristic makes it a good candidate for being used as a beam-to-column joint, the latter makes it highly applicable in connecting braces of a braced frame to the frame members. The experimental study carried out previously on this joint, concentrated on the performance of its steel specimens under 'monotonie' shear loading as well as that of its aluminium specimens under both... 

    Study of the Effect of Central Beam Column (CBC) Structure on Sequential Excavation of Large Span Underground Station

    , M.Sc. Thesis Sharif University of Technology Valizade Givi, Amir (Author) ; Ahmadi, Mohammad Mehdi (Supervisor)
    Abstract
    Effect of utilizing Central Beam Column (CBC) structure on shallow, large span underground spaces excavation is studied. The CBC method focuses on increasing the overall rigidity of tunnel supporting system prior to full face excavation, in which central drift excavation is limited to the dimensions of the central beam and column to reduce disturbances. Constructing the central beam and column structure, the excavation is completed with NATM excavation method in a symmetric manner about centerline. In CBC method on each side of the centerline there is an arch structure composed of the initial lining resting on roof beam on top and bottom beam at the invert. The roof and bottom beams take the... 

    Performance of Steel Beam Connections with Elliptical Opening in Beam Web

    , M.Sc. Thesis Sharif University of Technology Taghinia Hejabi, Arash (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    After the 1994 Northridge earthquake when investigations show clear results for brittle failure near Beam-Column rigid Connections, research on these connections begun and various theories were suggested for better performance under cyclic loads. One of the appropriate ways is shifting yield beam location from beam-column connection to the beams only. Reducing the capacity of the beam through the beam flange or web far enough from the column, creating special ductile region in the beam. In this thesis, weakening is made by creating an elliptical opening in web beams. If the correct design criteria for this type of connection are suggested, it can satisfy the "weak beam - strong column" and... 

    Numerical Study on Bolted End-Plate Connection and The Code Limits

    , M.Sc. Thesis Sharif University of Technology Hassanpoor, Mohammad Hossein (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Regarding the numerous casualties and financial losses due to intense earthquakes, the ductility is considered of the main importance in addition to stability, stiffness, and strength criteria of the structure’s connections. In order to enhance the seismic behavior of the structures in such severe earthquakes, design codes for steel structures have suggested special types of connections. Among them, bolted end plate connection is considered a conventional type of connection used for creating ductile semi-rigid connection.In this study, in order to simulate the behavior of this joint, a 3-D finite element model is developed in Abaqus software, in which the inelastic behavior of the materials... 

    On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

    , Article Steel and Composite Structures ; Volume 13, Issue 1 , 2012 , Pages 1-13 ; 12299367 (ISSN) Jafar Ramaji, I ; Mofid, M ; Sharif University of Technology
    2012
    Abstract
    In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly... 

    Compactness requirements of RBS connections

    , Article Advances and Trends in Structural Engineering, Mechanics and Computation - Proceedings of the 4th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2010, 6 September 2010 through 8 September 2010 ; 2010 , Pages 663-666 ; 9780415584722 (ISBN) Vasseghi, A ; Shahidi, S. G ; Zingoni A ; Sharif University of Technology
    Abstract
    Flexible steel frame system is the most common structural system for mid-rise buildings. Northridge earthquake is turning point in designing flexible steel frames and their connections. During this earthquake a large number of beam-column connections in such structures were ruptured in a brittle manner. After this earthquake many researches were conducted on a variety of beam-column connections with an aim of improving their behavior during earthquake. One such connection which have been studied extensively both experimentally and analytically is a connection with Reduced Beam Section (RBS). The most important advantage of this connection is its high ductility and its ability to dissipate...