Loading...
Search for: bejan
0.006 seconds

    Entropy generation in thermally developing laminar forced convection through a slit microchannel

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 515-526 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The issue of entropy generation in laminar forced convection of a Newtonian fluid through a slit microchannel is analytically investigated by taking the viscous dissipation effect, the slip velocity and the temperature jump at the wall into account. Flow is considered to be hydrodynamically fully developed but thermally developing. The energy equation is solved by means of integral transform. The results demonstrate that to increase Knudsen number is to decrease entropy generation, while the effect of increasing values of Brinkman number and the group parameter is to increase entropy generation. Also it is disclosed that in the thermal entrance region the average entropy generation number... 

    Second law analysis for extended graetz problem including viscous dissipation in microtubes

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, QC, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 503-514 ; 9780791854501 (ISBN) Sadeghi, A ; Baghani, M ; Saidi, M. H ; Fluids Engineering Division ; Sharif University of Technology
    2010
    Abstract
    The entropy generation rate has become a useful tool for evaluating the intrinsic irreversibilities associated with a given process or device. This work presents an analytical solution for entropy generation in hydrodynamically fully developed thermally developing laminar flow in a microtube. The rarefaction effects as well as viscous heating effects are taken into consideration, but axial conduction is neglected. Using fully developed velocity profile, the energy equation is solved by means of integral transform. The solution is validated by comparing the local Nusselt numbers against existing literature data. From the results it is realized that the entropy generation decreases as Knudsen... 

    Second law analysis of slip flow forced convection through a parallel plate microchannel

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 14, Issue 4 , 2010 , Pages 209-228 ; 15567265 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady-state fully developed laminar gas flow in a parallel plate microchannel with asymmetrically heated walls. The rarefaction effects as well as viscous heating effects are taken into consideration. Closed-form expressions are obtained for velocity and temperature distributions and entropy generation rates. The results demonstrate that increasing values of the wall heat fluxes ratio result in greater entropy generation for positive Brinkman numbers, whereas the opposite is true for negative values of Brinkman. However, the effect of the wall heat fluxes ratio on entropy generation becomes insignificant... 

    Entropy generation for forced convection in a porous channel with isoflux or isothermal walls

    , Article International Journal of Exergy ; Volume 5, Issue 1 , 2008 , Pages 78-96 ; 17428297 (ISSN) Hooman, K ; Hooman, F ; Mohebpour, S. R ; Sharif University of Technology
    Inderscience Publishers  2008
    Abstract
    A numerical study is reported to investigate the entropy generation due to forced convection in a parallel plate channel filled by a saturated porous medium. Two different thermal boundary conditions are considered being isoflux and isothermal walls. Effects of the Poclet number, the porous medium shape factor, the dimensionless temperature difference for isothermal walls, the dimensionless heat flux for isoflux walls, and the Brinkman number on the Bejan number as well as the local and average dimensionless entropy generation rate are examined. Copyright © 2008 Inderscience Enterprises Ltd  

    Analysis of microchannel heat sink performance for electronics cooling based on thermodynamics

    , Article 4th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006, Limerick, 19 June 2006 through 21 June 2006 ; Volume 2006 A , 2006 , Pages 355-362 ; 0791847608 (ISBN); 9780791847602 (ISBN) Abbassi, H ; Saidi, M. H ; Zageneh Kazemi, P ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Present investigation analyzes the issue of entropy generation in a uniformly heated microchannel heat sink (MCHS). Analytical approach used to solve forced convection problem across MCHS, is porous medium model based on modified Darcy equation for fluid flow and two-equation model for heat transfer between solid and fluid phases. Furthermore, closed form solution of velocity distribution is employed to capture z-direction velocity gradient of flow, which plays a salient role on entropy generation through fluid flow. Analytical expressions for total and thermal entropy generation number (stems from heat transfer), and Bejan number are derived and cast into dimensionless form using velocity... 

    Irreversibility of nanomaterial due to MHD via numerical approach

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 1041-1050 ; 13886150 (ISSN) Balazadeh, N ; Shafee, A ; Tlili, I ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In current research, MAPLE software was utilized to scrutinize the heat transfer of copper–H2O nanomaterial migration over a sheet. Entropy production in existence of magnetic field was scrutinized, and Bejan number was reported as main outputs. Converting PDEs into ODEs was done via similarity transformation, and final ODEs were analyzed via RK4. The influence of different variables, including fraction of nanomaterial and Lorentz force on flow distribution and temperature field, also on surface tension and Nu was demonstrated. Besides, Be and NG were calculated for various ranges of scrutinized variables. © 2020, Akadémiai Kiadó, Budapest, Hungary  

    Entropy generation for compressible natural convection with high gradient temperature in a square cavity

    , Article International Communications in Heat and Mass Transfer ; Volume 37, Issue 9 , November , 2010 , Pages 1388-1395 ; 07351933 (ISSN) Alipanah, M ; Hasannasab, P ; Hosseinizadeh, S. F ; Darbandi, M ; Sharif University of Technology
    2010
    Abstract
    Entropy generation due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subjected to different side wall temperatures for compressible and incompressible natural convection flows. Based on the obtained velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined and compared for compressible and incompressible regimes. It is found that the entropy generated for compressible flow always is more than incompressible flow. The study is performed for Ra=10 4-10 8, j{cyrillic, ukrainian}=0.01(incompressible regime) and 0.6 (compressible regime), Ge=10 -5 and Pr=0.7  

    Second law analysis of slip flow heat transfer in annulus microchannel

    , Article Proceedings of the ASME Summer Heat Transfer Conference 2009, HT2009, 19 July 2009 through 23 July 2009, San Francisco, CA ; Volume 1 , 2009 , Pages 321-330 ; 9780791843567 (ISBN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In the present work, the second law of thermodynamics analysis has been carried out for steady state hydrodynamically and thermally fully developed laminar gas flow in annulus microchannels with asymmetrically heated walls. The rarefaction effects are taken into consideration using first order slip velocity and temperature jump boundary conditions. Viscous heating is also included for both the hot wall and the cold wall cases. Using the velocity distribution obtained in earlier works, the energy equation is solved to get analytically the temperature distribution and consequently to compute the entropy generation rate. The effects of rarefaction and the annulus geometrical aspect ratio on... 

    Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 138, Issue 2 , 2019 , Pages 1423-1436 ; 13886150 (ISSN) Nakhchi, M. E ; Esfahani, J. A ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it...