Loading...
Search for: bending-torsion-coupling
0.005 seconds

    Torsional Flexural Stability Analysis of Narrow Section Beam Subjected to Moving Mass

    , M.Sc. Thesis Sharif University of Technology Nikpayam, Jaber (Author) ; Dehghani Firouzabadi, Roohollah (Supervisor)
    Abstract
    Long thin rectangular beams are used in many industrial engineering including railways, aerospace and etc. Beam subjected to moving mass is one of the classic problems in mechanics and vibrations of beams and have been studied by many researchers. In most of done works, the moving mass was assumed to be small compared to beam mass and only acceleration effect of mass was considered. Also in many of researches only bending of beams was studied. Moving mass imposes 2 type of force in the supporting beam, first one is weight and the other is due to motion of mass and contains lateral, coriolis and centrifugal acceleration effects. In addition, due to the particular geometry considered (narrow... 

    Dynamic Modeling and Control of Atomic Force Microscope in Trolling Mode

    , Ph.D. Dissertation Sharif University of Technology Sajadi, Mohammad Reza (Author) ; Vosoughi, Gholamreza (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Trolling mode atomic force microscope (TR-AFM) significantly reduces the hydrodynamic drag generated during operation in liquid environments. This is achieved by utilizing a long nanoneedle and keeping the cantilever out of liquid. In this research, a continuous mathematical model is developed to study TR-AFM dynamics near a sample submerged in the liquid. Effects of cantilever torsion, nanoneedle flexibility, and liquid-nanoneedle interactions are considered in the model. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of... 

    Coupled bending-torsion flutter investigation of MRE tapered sandwich blades in a turbomachinery cascade

    , Article Thin-Walled Structures ; Volume 152 , 2020 Bornassi, S ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper studies the effects of bending-torsion coupling on the flutter stability boundaries of a turbomachinery cascade with Magnetorheological Elastomer (MRE) based sandwich blades. The blade structure is considered as a non-uniform sandwich beam with an embedded MRE core. The governing equations of bending and torsional motions are obtained based on the classical sandwich beam theory and the unsteady Whitehead aerodynamic theory is applied for modeling of the aerodynamic flow. The equations of motion governing on the coupled aeroelastic system have been derived in a discrete form by Lagrange's equations and using the assumed modes method. The stability analysis is performed and the...