Loading...
Search for: binding-affinity
0.005 seconds

    Prediction of Protein Ligand Binding Affinity Using Deep Networks

    , M.Sc. Thesis Sharif University of Technology Gholamzadeh Lanjavi, Atena (Author) ; Kalhor, Hamid Reza (Supervisor) ; Motahhari, Abolfazl (Co-Supervisor)
    Abstract
    Protein-ligand binding affinity is extremely important for finding new candidates in drug discovery and computational biochemistry. One of the physical characteristics for protein ligand interactions has been dissociation constant (KD) which can be obtain experimentally. However, there have been tremendous efforts to predict KD using modeling and computational approaches for protein-ligand interactions. In this project, we have exploited Convolutional Neural Network (CNN) model based on KDeep design, PDBBind version 2016 refined set training data, and examining it with KDeep core set test data. In order to modify KDeep,instead of 24 rotations (0, 90, 180 and 270 degrees in selection of two... 

    Drug Target Binding Affinity Prediction Using a Deep Generative Model Based on Molecular and Biological Sequences

    , M.Sc. Thesis Sharif University of Technology Zamani Emani, Mojtaba (Author) ; Koohi, Somayyeh (Supervisor)
    Abstract
    Drug-target binding affinity prediction is one of the most important and vital part of drug discovery. The computational methods to predict binfing affinity is a standing challenge in drug discovery. State-of-the-art models are usually based on supervised machine learning with known label information. It is expensive and time-consuming to collect labeled data. This thesis proposes a semi-supervised model based on convolutional GAN (Generative adversarial networks). The model consists of two Gans and Two CNN blocks for feature extraction and fully connected layers for prediction. Gan can learn protein and drug features from unlabeled data. We evaluate the performance of our method using four... 

    MHC-Peptide Binding Prediction Using a Deep Learning Method with Efficient GPU Implementation Approach

    , M.Sc. Thesis Sharif University of Technology Darvishi, Saeed (Author) ; Koohi, Somayyeh (Supervisor)
    Abstract
    The Major Histocompatibility Complex (MHC) binds to the derived peptides from pathogens to present them to killer T cells on the cell surface. Developing computational methods for accurate, fast, and explainable peptide-MHC binding prediction can facilitate immunotherapies and vaccine development. Various deep learning-based methods rely on feature extraction from the peptide and MHC sequences separately and ignore their valuable binding information. This paper develops a capsule neural network-based method to efficiently capture and model the peptide-MHC complex features to predict the peptide- MHC class I binding. Various evaluations over multiple datasets using popular performance metrics... 

    Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) Abdolvahab, R. H ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
    2011
    Abstract
    We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We... 

    A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Fooladi Talari, F ; Bozorg, A ; Faridbod, F ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    An optical apta-nanosensor was designed and developed based on reduced graphene quantum dots (rGQDs) and multi-walled carbon nanotubes (MWCNTs) and applied for the selective detection of diazinon as one of the most widely used organophosphorus pesticides. Considering the GQDs and rGQDs high fluorescence emission and optical stability, efficient optical transducers could be designed and precise detection methods could be developed based on such transducers. Herein, by using rGQDs, diazinon specific aptamer, and MWCNTs, a simple economical fluorescence method has been introduced to detect and measure diazinon with the detection limit of 0.4 nM (0.1 μg/L) in the range of 4-31 nM, meeting the... 

    Simulation of blood oxygenation in capillary membrane oxygenators using modified sulfite solution

    , Article Biophysical Chemistry ; Vol. 195, issue , Dec , 2014 , p. 8-15 Tabesh, H ; Amoabediny, G ; Rasouli, A ; Ramedani, A ; Poorkhalil, A ; Kashefi, A ; Mottaghy, K ; Sharif University of Technology
    Abstract
    Blood oxygenation is the main performance characteristic of capillary membrane oxygenators (CMOs). Handling of natural blood in in vitro investigations of CMOs is quite complex and time-consuming. Since the conventional blood analog fluids (e.g. water/glycerol) lack a substance with an affinity to capture oxygen comparable to hemoglobin's affinity, in this study a novel approach using modified sulfite solution is proposed to address this challenge. The solution comprises sodium sulfite as a component, simulating the role of hemoglobin in blood oxygenation. This approach is validated by OTR (oxygen transfer rate) measured using native porcine blood, in two types of commercially available... 

    Power of a remote hydrogen bond donor: Anion recognition and structural consequences revealed by IR spectroscopy

    , Article Journal of Organic Chemistry ; Volume 80, Issue 2 , December , 2015 , Pages 1130-1135 ; 00223263 (ISSN) Samet, M ; Danesh Yazdi, M ; Fattahi, A ; Kass, S. R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    Natural and synthetic anion receptors are extensively employed, but the structures of their bound complexes are difficult to determine in the liquid phase. Infrared spectroscopy is used in this work to characterize the solution structures of bound anion receptors for the first time, and surprisingly only two of three hydroxyl groups of the neutral aliphatic triols are found to directly interact with Cl-. The binding constants of these triols with zero to three CF3 groups were measured in a polar environment, and KCD3CN(Cl-) = 1.1 × 106 M-1 for the tris(trifluoromethyl) derivative. This is a remarkably large value, and high selectivity with respect to interfering anions such as, Br-, NO3 -... 

    Theoretical aspects of the enhancement of metal binding affinity by intramolecular hydrogen bonding and modulating p: K a values

    , Article New Journal of Chemistry ; Volume 41, Issue 24 , 2017 , Pages 15110-15119 ; 11440546 (ISSN) Motahari, A ; Fattahi, A ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Polyols were used as model ligands for Mg2+, Ca2+, and Zn2+ complexes to study the role of the hydrogen bond network on the metal binding affinity and modulation of successive pKa values using density functional theory. The results confirm that the acidity of polyols dramatically increases upon metal complexation in the order Zn2+ > Mg2+ > Ca2+. For example, the three H-site positions in the hydroxyl groups of the heptaol, bound to Zn2+, are 11.2, 29.9, and 30.9 pKa units (in methanol) more acidic than those of pure heptaol. This acidity enhancement leads to making polyols as good ligands toward complexation. For instance, the formation constants of the heptaol in the presence of Zn2+, Mg2+,... 

    Quantitative structure-activity relationship study of serotonin (5-HT7) receptor inhibitors using modified ant colony algorithm and adaptive neuro-fuzzy interference system (ANFIS)

    , Article European Journal of Medicinal Chemistry ; Volume 44, Issue 4 , 2009 , Pages 1463-1470 ; 02235234 (ISSN) Jalali Heravi, M ; Asadollahi Baboli, M ; Sharif University of Technology
    2009
    Abstract
    Quantitative structure-activity relationship (QSAR) approach was carried out for the prediction of inhibitory activity of some novel quinazolinone derivatives on serotonin (5-HT7) using modified ant colony (ACO) method and adaptive neuro-fuzzy interference system (ANFIS) combined with shuffling cross-validation technique. A modified ACO algorithm is utilized to select the most important variables in QSAR modeling and then these variables were used as inputs of ANFIS to predict 5-HT7 receptor binding activities of quinazolinone derivatives. The best descriptors describing the inhibition mechanism are Qmax, Se, Hy, PJI3 and DELS which are among electronic, constitutional, geometric and... 

    Identification of a novel multifunctional ligand for simultaneous inhibition of amyloid-beta (aβ42) and chelation of zinc metal ion

    , Article ACS Chemical Neuroscience ; Volume 10, Issue 11 , 2019 , Pages 4619-4632 ; 19487193 (ISSN) Asadbegi, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Zinc binding to β-amyloid structure could promote amyloid-β aggregation, as well as reactive oxygen species (ROS) production, as suggested in many experimental and theoretical studies. Therefore, the introduction of multifunctional drugs capable of chelating zinc metal ion and inhibiting Aβ aggregation is a promising strategy in the development of AD treatment. The present study has evaluated the efficacy of a new bifunctional peptide drug using molecular docking and molecular dynamics (MD) simulations. This drug comprises two different domains, an inhibitor domain, obtained from the C-terminal hydrophobic region of Aβ, and a Zn2+ chelating domain, derived from rapeseed meal, merge with a... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation

    , Article Bioorganic Chemistry ; Volume 102 , September , 2020 Jokar, S ; Erfani, M ; Bavi, O ; Khazaei, S ; Sharifzadeh, M ; Hajiramezanali, M ; Beiki, D ; Shamloo, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (D-GABA-FPLIAIMA) was chosen and... 

    Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system

    , Article Analytical Chemistry ; Volume 79, Issue 12 , 2007 , Pages 4507-4513 ; 00032700 (ISSN) Zhang, X ; Eshaghi, A ; Musteata, F. M ; Ouyang, G ; Pawliszyn, J ; Sharif University of Technology
    2007
    Abstract
    An integrated microsampling approach based on solid-phase microextraction (SPME) was developed to provide a complete solution to highly efficient and accurate pharmacokinetic studies. The microsampling system included SPME probes that are made of poly(ethylene glycol) (PEG) and C18-bonded silica, a fast and efficient sampling strategy with accurate kinetic calibration, and a high-throughput desorption device based on a modified 96-well plate. The sampling system greatly improved the quantitative capability of SPME in two ways. First, the use of the C18-bonded silica/PEG fibers minimized the competition effect from analogues of the target analytes in a complicated sample matrix such as blood... 

    A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles

    , Article Analytica Chimica Acta ; Volume 882 , July , 2015 , Pages 58-67 ; 00032670 (ISSN) Ghasemi, F ; Hormozi-Nezhad, M.R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs... 

    Personalised deposition maps for micro- and nanoparticles targeting an atherosclerotic plaque: attributions to the receptor-mediated adsorption on the inflamed endothelial cells

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 18, Issue 3 , 2019 , Pages 813-828 ; 16177959 (ISSN) Shamloo, A ; Forouzandehmehr, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Endothelial inflammation as a prominent precursor to atherosclerosis elicits a distinct pathological surface expression of particular vascular proteins. To exhibit a site-specific behaviour, micro- and nanoparticles, as carriers of therapeutics or imaging agents, can distinguish and use these proteins as targeted docking sites. Here, a computational patient-specific model capturing the exclusive luminal qualities has been developed to study the transport and adsorption of particles decorated with proper antibodies over an atherosclerotic plaque located in the LAD artery of the patient. Particles, in nano- and micron sizes, have been decorated with Sialyl Lewisx (sLex), P-selectin aptamer... 

    Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenation’s conversion

    , Article Journal of Nanoparticle Research ; Volume 24, Issue 9 , 2022 ; 13880764 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this contribution, the effect of physical immobilization of methylene blue (MB) into silica nanocomposites was investigated on the conversion and selectivity of the photooxygenation of anthracene and dihydroartemisinic acid (DHAA). Physically immobilized photocatalysts were synthesized through a developed Stöber method and were thoroughly characterized by UV–Vis, FTIR, XRD, XPS, SEM, TEM, HR-TEM, BET-BJH, and EDX analyses. Based on the TEM and UV–Vis results, it was determined that enhancement of the MB concentration as an organocatalyst for the Stöber reaction led to an increase in the size of the nanoparticles from 54 to 183 nm and a 21 nm blue shift in their UV–Vis spectra. Moreover,...