Loading...
Search for: biofouling
0.006 seconds

    Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach

    , Article Desalination and Water Treatment ; Volume 51, Issue 40-42 , 2013 , Pages 7499-7508 ; 19443994 (ISSN) Reyhani, A ; Rekabdar, F ; Hemmati, M ; SafeKordi, A. A ; Ahmadi, M ; Sharif University of Technology
    Desalination Publications  2013
    Abstract
    In this study, the ultrafiltration of produced water was studied using a two-stage ultrafiltration process. In the first stage, the influences of operating parameters, including transmembrane pressure, temperature, and cross-flow velocity on the amount of flux decline caused by membrane fouling, were investigated using a polymeric membrane. In order to design the experiments and optimize the experimental results, the Taguchi method was applied. L9 (33) orthogonal array for experimental planning and the smaller-the-better response category was selected to obtain optimum conditions because the lowest flux decline was our aim. Analysis of variance was used to determine the most important... 

    Investigation of Antifouling Coating Paint on Steel

    , M.Sc. Thesis Sharif University of Technology Jalaee, Adel (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    Plants and aquatic creatures growth on the surface of human made structures is a typical phenomena. One of the approaches to prevent algae and moss to grow is using paint coatings including biocides. In this research project, anti-moss paints containing Copper Oxide as the major biocide and Zinc Oxide as the minor biocide have been synthesized. The effects of different parameters like the type of resin, biocide concentration, biocide grain sizes, dip time, and the coating layer thickness on the release rate which is the most important factor to prevent moss growth, have been investigated. Then, the experiment has been conducted on the specimens in algae growth and flustered sea water... 

    Biofouling Reduction in Reverse Osmosis Membrane for the Purification Brackish Water

    , M.Sc. Thesis Sharif University of Technology Niknamfar, Rasool (Author) ; Soltanieh, Mohammad (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    In this project, modification of reverse osmosis membrane was investigated in order to reduce the biofouling in treatment of brackish water. Furthermore, the technique which is used to attain the favorable results is graft polymerization to modify the membrane’s surface with grafting acrylic acid as hydrophilic monomer onto polyamide exploited as last layer in reverse osmosis membrane. This technique is a free radical grafting, andfree radicals which are needed for grafting are provided by the redox system potassium persulfate-sodium metabisulfite which was used as initiator. To figure out the best concentration of acrylic acid, initiator and process time in order to achieve a new membrane... 

    Superior anti-biofouling properties of mPEG-modified polyurethane networks via incorporation of a hydrophobic dangling chain

    , Article Progress in Organic Coatings ; Volume 158 , September , 2021 ; 03009440 (ISSN) Golmohammadian Tehrani, A ; Makki, H ; Ghaffarian Anbaran, R ; Vakili, H ; Ghermezcheshme, H ; Zandi, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    PEG-modification is a proven method to enhance the hydrophilicity, protein resistance, and anti-biofouling properties of polymer coatings. It is considered as the gold standard interfacial modification technique such that the higher PEG content, the higher hydrophilicity, and lower protein adsorption, i.e., the initial stage of the biofouling process. Nevertheless, increasing the PEG content causes a higher water uptake, which declines the polymer mechanical strength and increases its hydrolytic degradation rate. Thus, an effective strategy to produce a limited-water-absorbing PEG-modified polymer is to force the majority of PEG molecules to migrate towards the interfacial region while the... 

    Photocatalytic filtration reactors equipped with bi-plasmonic nanocomposite/poly acrylic acid-modified polyamide membranes for industrial wastewater treatment

    , Article Separation and Purification Technology ; Volume 236 , 2020 Amoli-Diva, M ; Irani, E ; Pourghazi, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, two new composite membranes with antifouling and anti-biofouling properties were prepared through the modification of commercial polyamide (PA) discs using combination of in-situ polymerization of polyacrylic acid (PAA) and grafting of two synthesized bi-plasmonic Au-Ag and Ag-Au photocatalysts. The synthesis and characterization of the photocatalysts in batch mode were discussed in details as primary studies. Two intense 405-nm and 532-nm lasers for Ag-Au and Au-Ag photocatalysts, respectively and a solar-simulated xenon lamp for both photocatalysts were applied for photodegradation studies and the results were compared. In addition, the effect of other parameters such as... 

    Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review

    , Article Desalination ; Volume 420 , 2017 , Pages 330-383 ; 00119164 (ISSN) Asadollahi, M ; Bastani, D ; Musavi, S. A ; Sharif University of Technology
    Abstract
    Reverse osmosis (RO) membrane process has become the most promising technology for desalination to produce purified water. Among numerous polymeric materials used to fabricate RO membranes, aromatic polyamide thin film composite (TFC) membranes are dominant in commercial RO membrane processes because of their high salt rejection and water permeability as well as their excellent chemical, thermal, and mechanical stability. However, the major hindrance to the effective application of polyamide TFC RO membranes is membrane fouling. Furthermore, polyamide TFC RO membranes have limited stability to chlorine, which is commonly used as disinfect to control membrane biofouling. These two factors... 

    Towards an understanding of marine fouling effects on VIV of circular cylinders: Aggregation effects

    , Article Ocean Engineering ; Volume 147 , 2018 , Pages 227-242 ; 00298018 (ISSN) Jadidi, P ; Zeinoddini, M ; Soltanpour, M ; Zandi, A. P ; Seif, M. S ; Sharif University of Technology
    Abstract
    The current study is aimed at getting a further insight into the changes the fouling brings to the Vortex Induced Vibration (VIV) of circular cylinders. Instead of regular patterns considered in previous studies, using the Poisson Cluster Process, an aggregated spatial distribution was considered for the artificial marine fouling. This is believed to better simulate the natural settlement of the marine biofouling. Different coverage ratios and fouling shapes plus regular and aggregated distributions were considered. The towing tank VIV tests were conducted on elastically mounted rigid cylinders. The Reynolds number ranged from around 7.8 × 103 to 4.9 × 104. On the whole, the maximum... 

    An investigation on using MDCs for an efficient desalination process as pretreatment of reverse osmosis

    , Article Journal of Water Supply: Research and Technology - AQUA ; Volume 69, Issue 4 , 1 June , 2020 , Pages 322-331 Habibi, A ; Abbaspour, M ; Javid, A. H ; Hassani, A. H ; Sharif University of Technology
    IWA Publishing  2020
    Abstract
    Microbial desalination cell (MDC) is a new bio-electrochemical technique which converts chemical energy into electrical energy, and at the same time desalinates water and treats wastewater. In this study, MDC performance and water biofouling conditions were tested as an efficient pretreatment desalination process of reverse osmosis (RO). The experiments were designed in a three-chamber reactor to compare the performance of batch and continuous fed modes, using bio-cathode and synthetic wastewater in four different hydraulic retention times and 17 and 35 g/L NaCl concentrations. According to the results, maximum salt removal of about 52.3% was obtained in the continuously fed MDC at 35 g/L... 

    Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes

    , Article Science of the Total Environment ; Volume 810 , 2022 ; 00489697 (ISSN) Vatanpour, V ; Jouyandeh, M ; Mousavi Khadem, S. S ; Paziresh, S ; Dehghan, A ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Munir, M. T ; Mohaddespour, A ; Rabiee, N ; Habibzadeh, S ; Mashhadzadeh, A. H ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and... 

    Cross-flow microfiltration of rough non-alcoholic beer and diluted malt extract with tubular ceramic membranes: Investigation of fouling mechanisms

    , Article Journal of Membrane Science ; Volume 362, Issue 1-2 , 2010 , Pages 306-316 ; 03767388 (ISSN) Yazdanshenas, M ; Soltanieh, M ; Tabatabaei Nejad, S. A. R ; Fillaudeau, L ; Sharif University of Technology
    2010
    Abstract
    The clarification of rough non-alcoholic beer (RNAB) and diluted malt extract (DME) was investigated in a pilot plant consisting of a tubular ceramic membrane with nominal pore diameter of 0.45μm. The results of the primary experiments show that the concentration of suspended particles in the RNAB (∼0.05kg/m3) and DME (∼0.2kg/m3) correlates proportionally to turbidity (in NTU) with the factor of 4.45×10-4 (kgm-3NTU-1). During cross-flow microfiltration (CFMF), flux declined drastically with time due to fouling mechanisms and propensity. According to the characterizing curve of log(d2t/dV2) versus log(dt/dV), fouling is initiated by penetration of aggregates through the membrane surface,... 

    Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification

    , Article Chemosphere ; Volume 290 , 2022 ; 00456535 (ISSN) Vatanpour, V ; Jouyandeh, M ; Akhi, H ; Mousavi Khadem, S. S ; Ganjali, M. R ; Moradi, H ; Mirsadeghi, S ; Badiei, A ; Esmaeili, A ; Rabiee, N ; Habibzadeh, S ; Koyuncu, I ; Nouranian, S ; Formela, K ; Saeb, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly... 

    Photocatalytic TiO2@MIL-88A (Fe)/polyacrylonitrile mixed matrix membranes: Characterization, anti-fouling properties, and performance on the removal of natural organic matter

    , Article Chemosphere ; Volume 302 , 2022 ; 00456535 (ISSN) Salehian, S ; Mehdipour, M. H ; Fotovat, F ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic membrane reactors (PMRs), coupling photocatalysts and membranes in a single system, have shown a considerable potential to reduce membrane fouling, which is one of the major drawbacks of using membranes to treat water and wastewater. In this study, the visible light-activated photocatalysts were incorporated into the polyacrylonitrile (PAN) casting solution to synthesize the photocatalytic composite membranes. The physicochemical properties and the morphology of the membranes and photocatalysts were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD), ultraviolet–visible diffuse reflectance...