Loading...
Search for: biological-cell
0.005 seconds

    Cell deformation modeling under external force using artificial neural network

    , Article Journal of Solid Mechanics ; Volume 2, Issue 2 , 2010 , Pages 190-198 ; 20083505 (ISSN) Ahmadian, M. T ; Vossoughi, G. R ; Abbasi, A. A ; Raeissi, P ; Sharif University of Technology
    2010
    Abstract
    Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection process, deformation and geometry of cell under external point-load is a key element to understand the interaction between cell and needle. In this paper, the goal is the prediction of cell membrane deformation under a certain force and to visually estimate the force of indentation on the membrane from... 

    Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

    , Article Animal Cells and Systems ; Volume 16, Issue 2 , Jan , 2012 , Pages 121-126 ; 19768354 (ISSN) Abbasi, A. A ; Vossoughi, G. R ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence... 

    Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory

    , Article Journal of Biomolecular Structure and Dynamics ; 17 April , 2020 Najaafi, N ; Jamali, M ; Habibi, M ; Sadeghi, S ; Jung, D. W ; Nabipour, N ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Over the last few years, some novel researches in the field of medical science made a tendency to have a therapy without any complications or side-effects of the disease with the aid of prognosis about the behaviors of the substructure living biological cell. Regarding this issue, nonlinear frequency characteristics of substructure living biological cell in axons with attention to different size effect parameters based on generalized differential quadrature method is presented. Supporting the effects of surrounding cytoplasm and MAP Tau proteins are considered as nonlinear elastic foundation. The Substructure living biological cell are modeled as a moderately thick curved cylindrical... 

    Modeling of Biological Cells with Applications to the Design of a Nano-Micro Gripper Used in Cell Manipulation

    , M.Sc. Thesis Sharif University of Technology Abbasi, Ali Asghar (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Vossoughi, Golamreza (Supervisor)
    Abstract
    Grasping and manipulation of biological cells have an extensive applications in genetics ,cell proliferation ,cell injection and etc. In robotic manipulation ,it is often assumed that the objects being handled are rigid and only small deformations occurred during manipulation. this does not apply for the case of biological cells. biological cells are highly deformable structures, and their material properties are not well quantified. Therefore strategies for characterizing and manipulating of such deformable objects needs to develop. Different experimental techniques have recently been used and devised to study biological cells. On the one hand, although this experimental techniques have... 

    Comparison of deformation analysis of a biological cell under an injection force using analytical, experimental and finite element methods and Artificial Neural Network

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 2 , 2011 , Pages 499-507 ; 9780791854884 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    Abstract
    Biological cell injection is a sensitive and important work which is implemented in injection of foreign materials into individual cells. Microinjection is significantly developed in the field of drug discovery and genetics so predicting the behavior of cell in microinjection is remarkably important because a tiny excessive manipulation force can destroy the tissue of the biological cell. There are a few analytical methods available to simulate the cell injection, hence the numerical methods such as FEM are suitable to be used to model the microinjection. In this study, a new spherical super element is presented to model the biological cells and deformation of a specific cell under an... 

    Application of hyperelastic models in mechanical properties prediction of mouse oocyte and embryo cells at large deformations

    , Article Scientia Iranica ; Volume 25, Issue 2B , March , 2018 , Pages 700-710 ; 10263098 (ISSN) Abbasi, A. A ; Ahmadian, M. T ; Alizadeh, A ; Tarighi, S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Biological cell studies have many applications in biology, cell manipulation, and diagnosis of diseases such as cancer and malaria. In this study, Inverse Finite Element Method (IFEM) combined with Levenberg-Marquardt optimization algorithm has been used to extract and characterize material properties of mouse oocyte and embryo cells at large deformations. Then, the simulation results have been validated using data from experimental works. In this study, it is assumed that cell material is hyperelastic, isotropic, homogenous, and axisymmetric. For inverse analysis, FEM model of cell injection experiment implemented in Abaqus software has been coupled with Levenberg-Marquardt optimization... 

    Design and Optimization of Digital Microfluidic Chip for Cell Sorting

    , M.Sc. Thesis Sharif University of Technology Orouji, Nooshin (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Today, microfluidics, representing the precise and controlled displacement of small amounts of fluid, is one of the most efficient tools available in various research fields, including medicine. Digital microfluidics is one of the newest microfluidic methods, which is based on the theory of electrowetting on dielectric. According to this theory, by applying a voltage difference to a droplet of fluid on a hydrophobic surface, the droplet can be moved on that surface. Therefore, by fabricating a plate containing a number of electrodes completely isolated from each other and controlling them, small droplets of fluid can be moved on a hydrophobic surface. In this thesis, the electrodes of this... 

    Whole cell mechanical property characterization based on mechanical properties of its cytoplasm and bio membrane

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 2 , November , 2012 , Pages 545-551 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Analysis and investigation of the relation between different parts of biological cells such as biomembrane, cytoplasm and nucleus can help to better understand their behaviors and material properties. In this paper, first, the whole elastic properties of mouse oocyte and embryo cells have been computed by inverse finite element and Levenberg-Marquardt optimization algorithm and second, using the derived mechanical properties and the mechanical properties of its bio membrane from the literature, the mechanical properties of its cytoplasm has been characterized. It has been assumed that the cell behavior is as continues, isotropic, nonlinear and homogenous material for modeling. Matching the... 

    Prediction of reaction force on external indenter in cell injection experiment using support vector machine technique

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 , 2012 , Pages 537-543 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Evaluation of the reaction force on a tool which is used for exertion of force on biomaterials such as biological cells or soft tissues has applications in virtual reality based medical simulators or haptic tools. In this study, two least square based support vector machine (SVM) models have been constructed to predict the indentation or reaction force on mouse oocyte and embryo cells in cell injection experiment. Inputs of these two models are geometrical parameters of indented cell, namely dimple radius (a), dimple depth (w) and radius of the semicircular curve (R). Experimental data for calibration and prediction of the models have been captured from literatures. The performance of the... 

    Force controlled manipulation of biological cells using a monolithic MEMS based nano-micro gripper

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 2 , 2012 , Pages 193-201 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Nano-micro grippers are able to pick-transport-place the micro or nanometer -sized materials, such as manipulation of biological cells or DNA molecules in a liquid medium. This paper proposes a novel monolithic nano-micro gripper structure with two axis piezoresistive force sensor which its resolution is under nanoNewton. The results of the study have been obtained by the simulation of the proposed gripper structure in Matlab software. Motion of the gripper arm is produced by a voice coil actuator. The behavior of the cell has been derived using the assumptions in the literatures. Moreover, two simple PID controllers, one for control of the gripper motion and another for control of the force... 

    Design and implementation of a new spherical super element in structural analysis

    , Article Applied Mathematics and Computation ; Volume 218, Issue 14 , March , 2012 , Pages 7546-7561 ; 00963003 (ISSN) Sarvi, M. N ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Finite Element Method (FEM) has proved to be a powerful tool for the analysis of mechanical problems such as finding natural frequency and deformation of structures. Design and implementation of super elements with a purpose in reduction of computational time along with accuracy is one of the challenges facing engineers in the past decade. In this study a newly spherical super element is designed and implemented to some problems. This element is generated in such a way that the user can select as many numbers of nodes as desired. Proper formulation is presented to generate the shape function for each node in this element. Some examples of static and vibration analysis using this element are... 

    Optimized kalman filter based on second momentum and triple rectangular for cell tracking on sequential microscopic images

    , Article 22nd Iranian Conference on Biomedical Engineering, 25 November 2015 through 28 November 2015 ; 2015 , Pages 251-256 ; 9781467393515 (ISBN) Khodadadi, V ; Fatemizadeh, E ; Setarehdan, S. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Cell dynamics and motion stages are very important issues in the biological cell investigation in this novel method, we propose a novel method based on Kalman filter and second momentum for tracking cells on Sequential Microscopic Images. In proposed manner at first, we select a cell and cut covering rectangle. in the next step, we predict rectangle center of the cell in Next frame based on a modeling of velocity-acceleration using Kalman filter. The rectangle with triple covering area of previous cell rectangle and predicting center by Kalman filter is considered as a searching area. So, if all objects in the search areas have second momentum error less than threshold, it is selected as a... 

    The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells

    , Article Computer Methods and Programs in Biomedicine ; Volume 184 , 2020 Hosseini, M ; Hasani, M. A ; Biglarian, M ; Amoei, A. H ; Toghraie, D ; Mehrizi, A. A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and objective: In this study, the effect of the second excitation frequency mode under different conditions on the fluid streaming and its microparticles displacement is investigated. Methods: For this purpose, some variable parameters such as the particle diameter, microchannel aspect ratio, and applied frequency modes have been selected to study. The resulted acoustic streaming was scrutinized to understand the physics of the problem under different geometrical and input conditions. Finally, the effect of the increasing the microparticle size and aspect ratio of the microchannel, simultaneously, has been evaluated. Results: The results demonstrated that increasing the... 

    A cellular cardiac matrix-based porous microcarrier as a cell delivery system in myocardial tissue engineering application

    , Article Iranian Polymer Journal (English Edition) ; Volume 31, Issue 9 , 2022 , Pages 1079-1091 ; 10261265 (ISSN) Ghanbari Asl, S ; Mashayekhan, S ; Khanmohammadi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Myocardial infarction (MI) causes a high mortality rate in the world every year. Myocardial tissue engineering using extracellular matrix-derived substrate and cytocompatible biopolymers is a promising approach for treating MI. Besides, injectable porous microspheres are developing engineer constructs to use as dual-purpose microcarriers for cell culture and injectable scaffolds in trivial invasiveness for tissue implantation. This study aimed to fabricate porous microcarriers composed of myocardial extracellular matrix and chitosan using an electrospraying technique. The effect of electrospraying parameters, including extracellular matrix/chitosan ratio and voltage, on MCs diameter was... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Application of a new spherical super element in predicting the deformation of biological cells in microinjection

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 41-49 ; 9780791854846 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    Biological cell injection is a sensitive and important work which is implemented in injection of foreign materials into individual cells. Microinjection is significantly developed in the field of drug discovery and genetics so predicting the behavior of cell in microinjection is remarkably important because a tiny excessive manipulation force can destroy the tissue of the biological cell. There are a few analytical methods available to simulate the cell injection, hence the numerical methods such as FEM are suitable to be used to model the microinjection. In this study, a new spherical super element is presented to model the biological cells and deformation of a specific cell under an... 

    Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds

    , Article Materials Science and Engineering C ; Volume 48 , March , 2015 , Pages 384-390 ; 09284931 (ISSN) Ardeshirzadeh, B ; Aboutalebi Anaraki, N ; Irani, M ; Roshanfekr Rad, L ; Shamshiri, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7 wt.%) indicated that the minimum diameter of nanofibers was found to be 85 nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH 5.3 and 7.4 indicated strong pH dependence. The... 

    Capturing single-cell heterogeneity via data fusion improves image-based profiling

    , Article Nature Communications ; Volume 10, Issue 1 , 2019 ; 20411723 (ISSN) Rohban, M. H ; Abbasi, H. S ; Singh, S ; Carpenter, A. E ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    Single-cell resolution technologies warrant computational methods that capture cell heterogeneity while allowing efficient comparisons of populations. Here, we summarize cell populations by adding features’ dispersion and covariances to population averages, in the context of image-based profiling. We find that data fusion is critical for these metrics to improve results over the prior alternatives, providing at least ~20% better performance in predicting a compound’s mechanism of action (MoA) and a gene’s pathway. © 2019, The Author(s)  

    The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells

    , Article Bioprocess and Biosystems Engineering ; Volume 39, Issue 7 , 2016 , Pages 1163-1172 ; 16157591 (ISSN) Hosseinzadeh, S ; Mahmoudifard, M ; Mohamadyar Toupkanlou, F ; Dodel, M ; Hajarizadeh, A ; Adabi, M ; Soleimani, M ; Sharif University of Technology
    Springer Verlag 
    Abstract
    Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun... 

    Comparison of mouse embryo deformation modeling under needle injection using analytical Jacobian, nonlinear least square and artificial neural network techniques

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1486-1491 ; 10263098 (ISSN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    Analytical Jacobian, nonlinear least square and three layer artificial neural network models are employed to predict deformation of mouse embryos under needle injection, based on experimental data captured from literature. The Maximum Absolute Error (MAE), coefficient of determination ( R2), Relative Error of Prediction (REP), Root Mean Square Error of Prediction (RMSEP), NashSutcliffe coefficient of efficiency ( Ef) and accuracy factor ( Af) are used as the basis for comparison of these three models. Analytical Jacobian, nonlinear least square and ANN models have yielded the correlation coefficient of 0.9985, 0.9964 and 0.9998, respectively. The REP between the models predicted values and...