Loading...
Search for: biological-objects
0.005 seconds

    Modeling of laser thermal and hydrodynamic effects on a dilute suspension of micro-particles in water

    , Article Journal of Mechanical Science and Technology ; Vol. 28, issue. 3 , 2014 , p. 1017-1026 Zabetian, M ; Saidi, M. H ; Saidi, M. S ; Shafii, M. B ; Sharif University of Technology
    Abstract
    Particle manipulation using laser beam is almost a new and contactless technique in particulate sciences. The method is based on the radiation pressure of light photons on the particles suspended in a semi-transparent fluid. Applications of the technique mainly cover microscopic separation and detection of biological objects. In this work, a theoretical study is conducted to investigate the hydrodynamic and thermal effects on a particulate flow in a mini-channel. Laser thermal effects are studied as a result of light absorption either in fluid or dispersed phase. An analytical model is developed to be the real simulator of a test bed developed by the authors. The main objective of performed... 

    Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    , Article Nanoscale ; Volume 7, Issue 19 , Apr , 2015 , Pages 8978-8994 ; 20403364 (ISSN) Hajipour, M. J ; Raheb, J ; Akhavan, O ; Arjmand, S ; Mashinchian, O ; Rahman, M ; Abdolahad, M ; Serpooshan, V ; Laurent, S ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different...