Loading...
Search for: biological-property
0.006 seconds
Total 24 records

    Albumin-graphene oxide conjugates; Carriers for anticancer drugs

    , Article RSC Advances ; Vol. 4, issue. 62 , July , 2014 , pp. 33001-33006 ; ISSN: 20462069 Jokar, S ; Pourjavadi, A ; Adeli, M ; Sharif University of Technology
    Abstract
    In order to improve its biological properties, graphene oxide can be modified with hydrophilic polymers. Therefore, in this study, the surface of graphene oxide was modified with polyethylene glycol and albumin by covalent methods. In the subsequent step, paclitaxel which is a hydrophobic anticancer drug was loaded onto the surface of the functionalized graphene by π-π interactions. The synthesis of the nanocarrier and its interaction with paclitaxel were evaluated by FT-IR, CD, TEM, UV, AFM, DLS and fluorescence experiments. Release of the loaded drug from albumin-graphene conjugate was investigated at pH 5.4, 6.8 and 7.4  

    The effect of multiple surface treatments on biological properties of Ti-6Al-4V alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 10 , 2014 , p. 4588-4593 Parsikia, F ; Amini, P ; Asgari, S ; Sharif University of Technology
    Abstract
    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface... 

    In vitro characterization of carbon-nanotube-reinforced hydroxyapatite composite coating on 316L stainless steel

    , Article Journal of Ceramic Science and Technology ; Volume 4, Issue 3 , August , 2013 , Pages 163-168 ; 21909385 (ISSN) Mohamadi, S. P ; Nemati, A ; Sadeghian, Z ; Sharif University of Technology
    2013
    Abstract
    This investigation focused on a comparison between hydroxyapatite (HA) and carbon-nanotube-reinforced hydroxyapatite composite (CNTs/HA) coatings. The HA and CNTs/HA composite (with 5wt% CNTs) coatings were prepared with the sol-gel method on 316L stainless steel. Phase evaluation by means of XRD and Raman spectroscopy was performed on the HA and CNTs/HA composite coatings. The coatings were immersed in simulated body fluid (SBF) in order to evaluate the biological properties of the coatings. During the first week of immersion, the increase in the amount of Ca2+ precipitation in the SBF when CNTs/HA was used was lower than for the HA coatings. This behavior can be related to the difference... 

    Green synthesis of CuO- And Cu2O-NPs in assistance with high-gravity- And flowering of nanobiotechnology

    , Article Nanotechnology ; Volume 31, Issue 42 , 2020 Ghadiri, A. M ; Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Fatahi, Y ; Di Bartolomeo, A ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    This study, for the first time, reports the synthesis of CuO- and Cu2O nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction. The potential antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria were investigated. It was shown that the antibacterial properties were independent of the NP morphology as well as of the texture of the synthesis... 

    Utilization of gene expression programming for modeling of mechanical performance of titanium/carbonated hydroxyapatite nanobiocomposites: The combination of artificial intelligence and material science

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 34, Issue 4 , 2021 , Pages 948-955 ; 17281431 (ISSN) Shojaei, M. R ; Khayati, G. R ; Hasani, A ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    Titanium carbonated hydroxyapatite (Ti/CHA) nanobiocomposites have extensive biological applications due to the excellent biocompatibility and similar characteristics to the human bone. Ti/CHA nanobiocomposite has good biological properties but it suffer from diverse characteristics especially in hardness, Young's modulus, apparent porosity and relative density. This investigation is an attempt to propose the predictive models using gene expression programming (GEP) to estimate these characteristics. In this regards, GEP is used to model and compare the effect of practical variables including pressure, Ti/CHA contents and sintering temperature on their monitored properties. To achieve this... 

    Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: Excellent flexibility and biocompatibility

    , Article Materials and Design ; Volume 215 , 2022 ; 02641275 (ISSN) Kianpour, G ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A flexible, porous and biocompatible titanium dioxide nanotubes (TNT) - polyurethane (PU) film has been produced as a new scaffold for artificial vascular grafts. Synergistic improvements in the properties of vertical TNT and PU was reached, including enhancements in their biocompatibility, mechanical strength, flexibility and porosity. Open-ended (OE) TNT-PU and close-ended (CE) TNT-PU films were synthesized and their mechanical and biological properties were compared with their pure PU counterparts. TNT were attached to PU with a new strategy. The resulting flexible structure was hydrophilic and super hydrophilic in OE-TNT-PU and CE-TNT-PU scaffolds, respectively. The gas leakage during... 

    MgO-incorporated carbon nanotubes-reinforced Mg-based composites to improve mechanical, corrosion, and biological properties targeting biomedical applications

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 976-990 ; 22387854 (ISSN) Abazari, S ; Shamsipur, A ; Bakhsheshi-Rad, H. R ; Keshavarz, M ; Kehtari, M ; Ramakrishna, S ; Berto, F ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    In this study, magnesium oxide (MgO) nanoparticles are incorporated on carbon nanotubes (CNTs) to reinforce Mg-3Zn-1Mn alloy (ZM31 alloy) by semi-powder metallurgy, followed by hot extrusion, with the purpose of improving the mechanical and biological properties of Mg-based alloy. The microstructural analysis of the nanocomposites indicated a reduction in grain size of Mg alloy with the incorporation of CNTs with a maximum reduction of 61% (ZM31/CNTs), with further reduction in grain size (68%) detected when MgO integrated CNTs composites (ZM31/MgO-CNTs). The compression characteristics of the composites indicate an increase in ultimate compressive strength of 36% and 44%, respectively, with... 

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Synthesis and Characterization of Nanofibrous Polymeric Composite Containing Two-dimensional MXene and Capable of Drug Release for Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Koohkhezri, Morvarid (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Nowadays, biocompatible composites are being utilized as scaffolds supporting cell growth promotion and features with the aim of organs regeneration or substitution based on tissue engineering principals. Moreover, in order to improve bioscaffolds features and function, various two-dimensional composite fillers have been under investigation; for instance, Graphene, Boron nitride, Metal dichalcogenides and oxides and black phosphorous and also electrospinning is mentioned as one of the most compatible and conventional processes of scaffold design that is also the main method of fabrication in this study. In addition, it should be pointed that biocompatible polymers and particularly natural... 

    Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

    , Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),... 

    Preparation of PVA nanocomposites using salep-reduced graphene oxide with enhanced mechanical and biological properties

    , Article RSC Advances ; Volume 5, Issue 112 , 2015 , Pages 92428-92437 ; 20462069 (ISSN) Pourjavadi, A ; Pourbadiei, B ; Doroudian, M ; Azari, S ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Salep, known as a biodegradable polysaccharide, is hydrolyzed and used as both a reducing agent and stabilizer for graphene oxide (GO). The functionalized reduced graphene oxide (f-rGO) is homogenously dispersed in an aqueous solution of poly(vinyl alcohol) (PVA). PVA based hydrogel and film nanocomposites are prepared and proposed as new biomaterials for tissue engineering applications. The mechanical properties of the film nanocomposites are investigated with varying content of f-rGO, glycerol and citric acid as a reinforcing agent, a plasticizer agent and a cross linking agent respectively. For the first time, chemically cross linked PVA hydrogels are synthesized using... 

    Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3476-3480 ; 10263098 (ISSN) Ghafari, A. M ; Rajabi Zeleti, S ; Naji, M ; Ghanian, M. H ; Baharvand, H ; Sharif University of Technology
    Abstract
    For a successful repair and reconstruction of bladder tissue, fabrication of scaffolds with proper biochemical and biomechanical characteristics is necessary. Decellularized bladder tissue has been proposed in previous studies as a gold standard material for scaffold fabrication. However, weak mechanical properties of such a load-bearing tissue has remained a challenge. Incorporation of both biological and synthetic materials has been known as an effective strategy for improving mechanical and biological properties of the scaffolds. In the present work, a simple process was developed to fabricate hybrid hydrogel scaffolds with a biomimetic architecture from the natural urinary bladder... 

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; 2018 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Mohseni Taromsari, S ; Salari, M ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; Volume 54, Issue 5 , 2019 , Pages 4259-4276 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Bioinspired multifunctional TiO2 hierarchical micro/nanostructures with tunable improved bone cell growth and inhibited bacteria adhesion

    , Article Ceramics International ; Volume 46, Issue 7 , 2020 , Pages 9669-9679 Rahnamaee, S. Y ; Bagheri, R ; Vossoughi, M ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Two main origins of failure for hard tissue replacements are structural loosening and prosthetic implant infections (PIIs). Bioinspired multifunctional TiO2 hierarchical micro/nanostructures of conical-shaped TiO2 (CTO), regular TiO2 nanotubes (RTO) and irregular TiO2 nanotubes (ITO) with tunable improved cell growth and inhibited bacteria adhesion were synthesized. CTO and ITO samples indicated superhydrophilicity with contact angles of less than 5°. The MTT assay demonstrated excellent biological performance for RTO and CTO sample with 98.1% and 103.1% of cell viability, respectively. The bridging force for osteoblast cell attachment onto the synthesized porous coatings was presented as a... 

    Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass

    , Article Ceramics International ; Volume 46, Issue 14 , 2020 , Pages 22674-22682 Sharifianjazi, F ; Moradi, M ; Abouchenari, A ; Pakseresht, A.H ; Esmaeilkhanian, A ; Shokouhimehr, M ; Shahedi Asl, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, the effects of Sr and Mg were investigated on mechanical and biological properties of 58S bioactive glass (BG). SiO2-P2O5-CaO BG with different contents of Sr and Mg were synthesized via the sol-gel method and immersed in simulated body fluid (SBF) for several days to explore their biocompatibility. Precise analyses of the BG using X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy showed that the Mg-doped BG containing 8 wt % MgO possessed better biocompatibility. It was also found that mechanical properties of the BG could be improved by increasing the amounts of MgO and SrO. Both 5Sr-BG and 8Mg-BG samples did not exhibit any... 

    Compatibilization of clays and hydrophobic polymers: the case of montmorillonite and polyetheretherketone

    , Article Polymer Bulletin ; Volume 77, Issue 10 , 2020 , Pages 5505-5527 Zandsalimi, K ; Akbari, B ; Mehrnejad, F ; Bagheri, R ; Sharif University of Technology
    Springer  2020
    Abstract
    In the last three decades, nanoclay fillers have been increasingly used to improve the mechanical, thermal, barrier and biological properties of the polymers. Nevertheless, incorporation of clays into the hydrophobic polymer matrices leads to the formation of the microcomposites with the minimal improvement in properties. To overcome the intrinsic incompatibility between the clays and the hydrophobic polymers, clay particles are organophilized using organic modifiers. The organic modifier should be thermodynamically miscible with the polymer. In the case of the composites prepared at high temperatures, the organic modifier should also have a high thermal stability to withstand the processing... 

    Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria

    , Article Materials ; Volume 15, Issue 5 , 2022 ; 19961944 (ISSN) Rabiee, N ; Ahmadi, S ; Akhavan, O ; Luque, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles’ physicochemical properties and potential antimicrobial activity. The...