Loading...
Search for: biomems
0.004 seconds

    A novel reciprocating micropump based on Lorentz force

    , Article Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 7 February 2015 through 9 February 2015 ; Volume 9320 , 2015 ; 16057422 (ISSN) ; 9781628414103 (ISBN) Salari, A ; Hakimsima, A ; Shafii, M. B ; Sharif University of Technology
    SPIE  2015
    Abstract
    Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber... 

    Characterization of sputtered NiTi shape memory alloy thin films

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 248-252 ; 10263098 (ISSN) Sanjabi, S ; Naderi, M ; Zare Bidaki, H ; Sadrnezhaad, Kh ; Sharif University of Technology
    2009
    Abstract
    During recent years, many investigations have been carried out to determine how to select different materials for the making of Micro Electro Mechanical Systems (MEMS) and bio-MEMS. The NiTi shape memory alloy thin film has been much regarded as a promising candidate for MEMS due. to its unique shape memory effect and high energy output. In this research, NiTi thin film was fabricated using a sputtering technique from separate elemental Ni and Ti targets. The characterizations of the deposited films were, investigated using different analysis techniques, such as Field Emission SEM, DSC, XR.D, electrical resistivity measurement and nanoindentation. © Sharif University of Technology, June 2009... 

    Revealing electrical stresses acting on the surface of protoplast cells under electric field

    , Article European Journal of Mechanics, B/Fluids ; Volume 76 , 2019 , Pages 292-302 ; 09977546 (ISSN) Dastani, K ; Moghimi Zand, M ; Hadi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    When cells exposed to an electric field, localized changes in the distribution of the electric field will be induced and these changes in turn lead to electrical stresses on cell surface. The electrical stresses play a key role in the cell membrane structural changes which leads to important phenomena like hydrophilic pores formation on the cell membrane resulting in the cell permeability. In this work, protoplast cell interaction with direct current (DC) electric field is investigated. The electrical stresses acted on the cell membrane in the presence of electric field are investigated numerically by a modified finite difference method, fast Immersed Interface Method (IIM). Exact solution...