Search for: biomimetic-processes
0.009 seconds

    Synthesis and characterisation of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method

    , Article Advances in Applied Ceramics ; Volume 112, Issue 3 , 2013 , Pages 140-145 ; 17436753 (ISSN) Esfahani, H ; Nemati, A ; Salahi, E ; Sharif University of Technology
    The present work studied bioactive coatings on the surface of ceramic biomaterials. Zirconia toughened alumina (ZTA) composites containing 15 mol.-%. Partially stabilised zirconia was prepared after 1 h sintering at 1550°C. Apatite layers were then coated onto the surfaces of composites by the biomimetic method using 1·5-2 multiply concentrations of simulated body fluid (SBF). Before treatment in SBFs, a sodium silicate layer was employed as nucleating agent to induce the formation of a calcium phosphate layer. The effect of immersion time on the morphology of the precipitate was monitored with a scanning electron microscope. X dot maps revealed that there is a relationship between... 

    Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications

    , Article Starch/Staerke ; Volume 68, Issue 11-12 , 2016 , Pages 1275-1281 ; 00389056 (ISSN) Nourmohammadi, J ; Shahriarpanah, S ; Asadzadehzanjani, N ; Khaleghpanah, S ; Heidari, S ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    The formation of biomimetic bone-like apatite layers throughout the biopolymer-based hydrogel scaffold is an attractive approach in bone tissue engineering. Here, the starch scaffold was prepared using a combination of particulate leaching and freeze-drying techniques. The fabricated structures were then modified by citric acid to investigate the formation of bone-like apatite layer on the porous citrate-based scaffold after soaking in simulated body fluid (SBF). The Fourier Transform Infrared (FTIR) spectra and X-ray diffraction (XRD) patterns revealed that the B-type carbonated apatite has successfully deposited on the scaffold after immersing in SBF for 28 days. Indeed, high chemical... 

    Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3476-3480 ; 10263098 (ISSN) Ghafari, A. M ; Rajabi Zeleti, S ; Naji, M ; Ghanian, M. H ; Baharvand, H ; Sharif University of Technology
    For a successful repair and reconstruction of bladder tissue, fabrication of scaffolds with proper biochemical and biomechanical characteristics is necessary. Decellularized bladder tissue has been proposed in previous studies as a gold standard material for scaffold fabrication. However, weak mechanical properties of such a load-bearing tissue has remained a challenge. Incorporation of both biological and synthetic materials has been known as an effective strategy for improving mechanical and biological properties of the scaffolds. In the present work, a simple process was developed to fabricate hybrid hydrogel scaffolds with a biomimetic architecture from the natural urinary bladder...