Loading...
Search for: bipedal-robot
0.006 seconds

    Frontal Plane Balance Control of a Biped Robot Based on Human Balancing Strategy

    , M.Sc. Thesis Sharif University of Technology Dehghani Tafti, Mohammad Reza (Author) ; Farahmand, Farzam (Supervisor) ; Hoviattalab, Maryam (Supervisor)
    Abstract
    The capability to control and maintain upright posture is a fundamental requirement for humanoid robots. Although many control algorithms were successfully presented, it seems developing a new controller inspired from human balance strategy would greatly improve performance and reduce energy consumption. To study the control strategy used by human nerves system more precisely, a balancing exercise was designed and implemented. Five human subjects were asked to stand on an unstable tilting board and balance the board. Instantaneous Eulerian angles of body segments of human subjects were captured by utilizing Xsense orientation sensors. A humanoid robot standing on the tilting board was... 

    Employing a novel gait pattern generator on a social humanoid robot

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2154-2166 ; 10263098 (ISSN) Meghdari, A ; Behzadipour, S ; Abedi, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    This paper presents a novel Gait Pattern Generator ((IPC) developed for the "Alice" social humanoid robot, which up to now lacked an appropriate walking pattern. Due to t he limitations of this robot, the proposed gate pattern generator was formulated based on a nine-mass model to decrease the modeling errors and t he inverse kinematics of the whole lower-body was solved in such a way that the robot remained statically stable during t he movements. The main challenge of this work was to solve t he inverse kinematics of a 7-link chain with 12 degrees of freedom. For this purpose, a new graphical-numerical technique has been provided using the definition of the kinematic equations of the robot... 

    Employing a novel gait pattern generator on a social humanoid robot

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2154-2166 ; 10263098 (ISSN) Meghdari, A ; Behzadipour, S ; Abedi, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    This paper presents a novel Gait Pattern Generator ((IPC) developed for the "Alice" social humanoid robot, which up to now lacked an appropriate walking pattern. Due to t he limitations of this robot, the proposed gate pattern generator was formulated based on a nine-mass model to decrease the modeling errors and t he inverse kinematics of the whole lower-body was solved in such a way that the robot remained statically stable during t he movements. The main challenge of this work was to solve t he inverse kinematics of a 7-link chain with 12 degrees of freedom. For this purpose, a new graphical-numerical technique has been provided using the definition of the kinematic equations of the robot... 

    On Correlation of Dynamic Biped Locomotion and Dynamic Object Manipulation

    , Ph.D. Dissertation Sharif University of Technology Beigzadeh, Borhan (Author) ; Meghdari, Ali (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Dynamic Object Manipulation (DOM) and Dynamic Biped Locomotion (DBL) are certainly two major categories in robotics, which attract much attention of scientists. Their (hybrid) nonlinear dynamics usually make them challenging subjects to deal with. Such systems are often used as benchmarks to test new nonlinear control approaches or stability analyses. However, there is not a unified approach to both systems. Although it seems that DOM and DBL systems are completely different at first view, we deeply believe that essential similarities exist between these two robotic fields. In this dissertation, we study the correlation of DOM and DBL while addressing passive, underactuated, and fully... 

    Design of a Distributed Controller for Stabilizing the Locomotion of Seven-Link Underactuated Planar Biped Robot with Training Ability

    , M.Sc. Thesis Sharif University of Technology Kakaei, Mohammad Mehdi (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    In this work inspiring from the nature a control method is proposed for a stable rhythmic walking in a seven-link underactuated biped robot. Stable walking is a very important issue in biped robots and proposing a dynamically stable pattern of motion with the capability of acceleration and learning is our main purpose. It is tried that the presented method make the robot have a human like motion. This method controls dynamically the hybrid model of robot’s movement and stabilizes it by converging the time-invariant constraints considered to make this movement. Moreover, in addition to providing a suitable gait for the bipod robot, a robust control method is designed to improve the ability of... 

    Learning-based Control System Design for the Bipedal Running Robot and Development of a Two-layer Framework for Generating the Optimal Paths in Various Movement Maneuvers

    , M.Sc. Thesis Sharif University of Technology Amiri, Aref (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Foot movement is one of the most powerful and adaptable methods of movement in nature. Inspired by humans, the most intelligent creatures on earth, bipedal robots have many uses. In this research, a control method for running a bipedal robot has been designed. In the simulation part of the five-link model, the robot's motion equations for running and walking at different levels are extracted by the Lagrange method. In path generation, using the two-layer optimization method and holonomic and dynamic constraints, optimal paths are produced which are kinematically and dynamically possible (feasible). Additionally, path generation is facilitated by an invariant impact constraint to ensure the... 

    Design and Implementation of a Gait Pattern for the Humanoid Tobot “Mina”

    , M.Sc. Thesis Sharif University of Technology Abedi, Majid (Author) ; Meghdari, Ali (Supervisor) ; Behzadipour, Saeed (Supervisor)
    Abstract
    In the resent years, social robots has been emerged to improve the interactions between humans and robots. These intractions are intended more in human environment. So the reasonable performance of such robots is achieved if robots’ motion; become similar to humans. Hence, despite the complexities of manufacturing and controlling the bipedal and humanoid robots, the researches on this class of robots are still in continuing more and more. In 2013, the humanoid robot, R-50, made by Robokind Company, was purchased by the Mechanical Engineering Department of Sharif University of Technology. This robot was named Mina and to be used in the researches on the treatment of autism patients. Although... 

    Design of Continuous and Time-Invariant Controllers for Exponential Stabilization of Periodic Walking and Running Locomotion in Planar Bipedal Robots

    , Ph.D. Dissertation Sharif University of Technology Akbari Hamed, Kaveh (Author) ; Sadati, Nasser (Supervisor)
    Abstract
    During the last decades there have been enormous advances in robot control of dynamic walking and running. The desire to study legged locomotion has been motivated by 1) the desire to replace humans in hazardous occupations, 2) the desire to assist disabled people to walk and 3) the desire to investigate the complicated motions of the mankind. The control of dynamic walking and running is complicated by (i) limb coordination, (ii) hybrid nature of running due to presence of impact and takeoff, (iii) underactuation and overactuation, (iv) inability to apply the Zero Moment Point (ZMP) criterion, (v) lack of algorithms to achieve feasible period-one orbits, and (vi) conservation of angular... 

    Stabilization of periodic orbits for planar walking with noninstantaneous double-support phase

    , Article IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans ; Volume 42, Issue 3 , 2012 , Pages 685-706 ; 10834427 (ISSN) Hamed, K. A ; Sadati, N ; Gruver, W. A ; Dumont, G. A ; Sharif University of Technology
    Abstract
    This paper presents an analytical approach to design a continuous time-invariant two-level control scheme for asymptotic stabilization of a desired period-one trajectory for a hybrid model describing walking by a planar biped robot with noninstantaneous double-support phase and point feet. It is assumed that the hybrid model consists of both single- and double-support phases. The design method is based on the concept of hybrid zero dynamics. At the first level, parameterized continuous within-stride controllers, including single- and double-support-phase controllers, are employed. These controllers create a family of 2-D finite-time attractive and invariant submanifolds on which the dynamics... 

    A supervisory fuzzy-PID controller for a MIMO biped robot balance in frontal plane

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 2 , 2009 , Pages 307-314 ; 9780791848630 (ISBN) Zomorodi Moghadam, H ; Haghshenas Jaryani, M ; Farahmand, F ; Sharif University of Technology
    2009
    Abstract
    In this paper we propose to control a bipedal robot in an unstable position by means of a PID controller that gains are turned by a fuzzy logic system. For that, a model of planar 3 linked segment consisting of limb, trunk and extended arms with fixed base is used. Fuzzy if-then rules are constructed based on human expert knowledge and biomechanics studies for tuning of PID's gain. For construction of tuning rules, we have developed an optical measuring system to record experimental data of balance keeping of a human in an unstable position. The control model is based on three sets of different global variables: (1) limb orientation and its derivative, (2) trunk/upper attitude and its...