Loading...
Search for: biphenyl-compounds
0.005 seconds

    QSAR modelling of integrin antagonists using enhanced bayesian regularised genetic neural networks

    , Article SAR and QSAR in Environmental Research ; Volume 22, Issue 3-4 , May , 2011 , Pages 293-314 ; 1062936X (ISSN) Jalali Heravi, M ; Mani Varnosfaderani, A ; Sharif University of Technology
    2011
    Abstract
    Bayesian regularised genetic neural network (BRGNN) has been used for modelling the inhibition activity of 141 biphenylalanine derivatives as integrin antagonists. Three local pattern search (PS) methods, simulated annealing and threshold acceptance were combined with BRGNN in the form of a hybrid genetic algorithm (HGA). The results obtained revealed that PS is a suitable method for improving the ability of BRGNN to break out from the local minima. The proposed HGA technique is able to retrieve important variables from complex systems and nonlinear search spaces for optimisation. Two models with 8-3-1 artificial neural network (ANN) architectures were developed for describingα 4β 7 and α 4β... 

    Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework

    , Article Materials Science and Engineering C ; Volume 104 , 2019 ; 09284931 (ISSN) Hatamie, S ; Ahadian, M. M ; Soufi Zomorod, M ; Torabi, S ; Babaie, A ; Hosseinzadeh, S ; Soleimani, M ; Hatami, N ; Wei, Z. H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Metal-organic framework (MOF) based graphene oxide (GO) recently merits of attention because of the relative correspondence of GO with metal ions and organic binding linkers. Furthermore, introducing the GO to the Co-MOF to make a new nanoporous hybrid have are improved the selectivity and stability of the Co-MOF. Here the graphene oxide/cobalt metal organic framework (GO/Co-MOF) was synthesized by a solvothermal process using cobalt salt and terephthalic acid and used for biocidal activity, against the growth of the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy were confirmed...