Loading...
Search for: blade-element-momentums
0.006 seconds

    The Study of Megawatt Wind Turbine Rotor Performance in Presence of Contamination Using CFD

    , M.Sc. Thesis Sharif University of Technology Mohajer, Abbas (Author) ; Darbandi, Masoud (Supervisor) ; Taiebi Rahni, Mohammad (Supervisor)
    Abstract
    Considering the negative effects of contamination on wind turbine blade performance, we investigate aerodynamics performance of a one- Megawatt wind turbine. To achieve this, we compare the performance and power of the wind turbine with and without contaminations. To calculate the wind turbine output power, we use a developed wind turbine calculator, which benefits from the Blade Element Momentum (BEM) theory. Furthermore, the aerodynamics calculations are performed using of a commercial software for clean and rough airfoils. Considering the change of Reynolds number along the blade axis, the airfoil characteristics are calculated for two Reynolds numbers of 0.5 and 3.5 millions to increase... 

    The Effect of Wind Turbine Rotor Deflection on Its Aerodynamic Performance Using Actuator Disc Model

    , M.Sc. Thesis Sharif University of Technology Jalali, Ramin (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    An aerodynamical model for studying asymmetric and three-dimensional flow fields about wind turbine rotors is presented. The developed algorithm combines a asymmetric and three-dimensional Navier-Stokes solver with a so-called actuator disc technique in which the loading is distributed along lines representing the blade forces. The loading is determined iteratively using a bladeelement approach and tabulated airfoil data. Computations are carried out for a 5MW NREL wind turbine equipped with three blades. The computed power production is found to be in good agreement with measurements. The computations give detailed information about basic features of wind turbine wakes, including... 

    Developing Novel Algorithms to Simultaneous Power Regulation and Load Mitigation of Modern Variable Speed Wind Turbines

    , Ph.D. Dissertation Sharif University of Technology Golnary, Farshad (Author) ; Moradi, Hamed (Supervisor)
    Abstract
    The power control of horizontal axis wind turbines can affect significantly the vibration loads and fatigue life of the tower and the blades. In this thesis, we are going to consider both the power control and vibration load mitigation of the tower fore-aft vibration. For this purpose, at first, we developed a fully coupled model of the NREL 5MW turbine. This model considers the full aeroelastic behavior of the blades and tower and is validated by experiment results, comparing the time history data with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence ) code which is developed by NREL (National Renewable Energy Lab in the United States). In the next, to estimate EWV, a novel... 

    Hollow blades for small wind turbines operating at high atitudes

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 138, Issue 6 , 2016 ; 01996231 (ISSN) Pourrajabian, A ; Amir Nazmi Afshar, P ; Mirzaei, M ; Ebrahimi, R ; Wood, D. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Since the air density reduces as altitude increases, operation of small wind turbines (SWTs), which usually have no pitch adjustment, remains challenging at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the moment of inertia through the use of hollow blades, this study aims to speed up the starting while maintaining the structural integrity of the blades and high output power. A horizontal axis turbine with hollow blades was designed for two sites in Iran with altitude of 500 m and 3000 m. The design variables are the distributions of the chord, twist, and shell thickness and the improvement of output power and starting are the design goals.... 

    Applied flight dynamics modeling and stability analysis of a nonlinear time-periodic mono-wing aerial vehicle

    , Article Aerospace Science and Technology ; Volume 108 , 2021 ; 12709638 (ISSN) Farvardin Ahranjani, F ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    This paper presents fly-ability, trim-ability, stability, and control ability of a mono-wing aerial vehicle as an under-actuated multi-body system. A nonlinear mathematical model of this vehicle with translational and rotational movements is developed. Based on early simulations, a conceptual prototype of the mono-wing is initially designed and constructed. A comprehensive nonlinear simulation is then performed by modeling aerodynamic forces and moments using the Blade Element Momentum (BEM) theory. Modeling and simulation are validated against experimental data to satisfy research needs. Twenty-three efficient dynamic parameters of the mono-wing are studied in ninety-seven simulation... 

    Modelling, System Identification and Controllers Design of a Coanda Air Vehicle

    , M.Sc. Thesis Sharif University of Technology Alizadeh Ardaji, Masoud (Author) ; Banazadeh, Afshin (Supervisor)
    Abstract
    In this study, the two rigid body modelling of a Coanda air vehicle (one rigid includes rotor and propeller and the second rigid includes the other parts of it) has been developed using Newton’s and Euler’s laws, and its motion was simulated in climb and forward flight conditions. Air vehicle propulsion force and moment have been modelled by employing the blade element momentum theory. In order to model the forces acting on the air vehicle, the drag force has been estimated by the results of analytical and computational fluid dynamics methods for the case of climb flight and by using experimental data of a cylindrical body for the forward flight. For modelling the control surfaces of this... 

    Aeroelastic Analysis of Horizontal Axis Wind Turbine Based on Actuator Disk Method

    , M.Sc. Thesis Sharif University of Technology Nozari, Mostafa (Author) ; Ebrahimi, Abbas (Supervisor) ; Rezaei, Mohammad Mahdi (Co-Advisor)
    Abstract
    The issue of solid and fluid interaction in horizontal axis wind turbines with diameter of more than 120 meters is one of the most important researching subjects of this type of turbines. This issues needs quick and exact solutions because of the high computational cost of fluid and structural domains.In this research a quick method with acceptable accuracy has been suggested which is based on computational fluid dynamic to examine the aeroelastic behavior of rotor and wind turbine tower. The actuator disc method in two domains of axisymmetric and three-dimensional has been used to compute aerodynamic forces. For this purpose a code has been written in C++ to set down virtual momentum on... 

    Dynamic Modelling and Nonlinear Control of a Hybrid Powered Hexarotor for Precise Trajectory Tracking

    , M.Sc. Thesis Sharif University of Technology Saadat, Sepehr (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    In this Thesis, an unmanned multicopter with a new structure is modeled and a nonlinear controller is designed for it to track the trajectories precisely. The multicopter in this thesis, has six propellers with a hybrid propulsion system (a combination of fuel and electric propulsion system) that has the ability to carry more payload and maintain more flight duration compared to electric multicopters. In the beginning, the performance characteristics and technical specifications of the hexacopter are presented. For modeling, first the equations of six degrees of freedom movement of the hexacopter are derived by the Newton-Euler method. In the next step, the forces and torques applied to the... 

    Development of Actuator Disk Method to Simulate Fluid-structure Interaction in Megawatt Wind Turbine Blade Analysis

    , Ph.D. Dissertation Sharif University of Technology Behrouzifar, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Recent decades have seen a growing demand for high-power wind turbines resulting in turbines with larger blades and the advent of high-megawatt wind turbines. The blades of the megawatt-scale turbines experience more complicated flow phenomena compared to those of the smaller-scale wind turbines. Needless to say, the importance of an accurate solution and detailed analysis of all the parameters, including blades aerodynamic and aeroelastic performance as well as fluid-structure interaction, is more significant for the megawatt-scale turbines compared to smaller-scale turbines. The conventional methods of aerodynamic solutions for the blade, including analytical methods, such as BEMT78 and... 

    A new correlation on the MEXICO experiment using a 3D enhanced blade element momentum technique

    , Article International Journal of Sustainable Energy ; Vol. 33, issue. 2 , 2014 , pp. 448-460 ; ISSN: 14786451 Mahmoodi, E ; Jafari, A ; Schaffarczyk, A. P ; Keyhani, A ; Mahmoudi, J ; Sharif University of Technology
    Abstract
    The blade element momentum (BEM) theory is based on the actuator disc (AD) model, which is probably the oldest analytical tool for analysing rotor performance. The BEM codes have very short processing times and high reliability. The problems of the analytical codes are well known to the researchers: the impossibility of describing inside the one-dimensional code the three-dimensional (3D) radial flows along the span-wise direction. In this work, the authors show how the 3D centrifugal pumping affects the BEM calculations of a wind turbine rotor. Actually to ascertain the accuracy of the analytical codes, the results are compared with rotor performance, blade loads and particle image... 

    Site specific optimization of wind turbines energy cost: Iterative approach

    , Article Energy Conversion and Management ; Volume 73 , September , 2013 , Pages 167-175 ; 01968904 (ISSN) Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    The present study was aimed at developing a model to optimize the sizing parameters and farm layout of wind turbines according to the wind resource and economic aspects. The proposed model, including aerodynamic, economic and optimization sub-models, is used to achieve minimum levelized cost of electricity. The blade element momentum theory is utilized for aerodynamic modeling of pitch-regulated horizontal axis wind turbines. Also, a comprehensive cost model including capital costs of all turbine components is considered. An iterative approach is used to develop the optimization model. The modeling results are presented for three potential regions in Iran: Khaf, Ahar and Manjil. The optimum... 

    Aero-structural design and optimization of a small wind turbine blade

    , Article Renewable Energy ; Volume 87 , 2016 , Pages 837-848 ; 09601481 (ISSN) Pourrajabian, A ; Nazmi Afshar, P. A ; Ahmadizadeh, M ; Wood, D ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The study develops a methodology for the aero-structural design including consideration of the starting of a small wind turbine blade. To design a fast-starting blade, starting time was combined with output power in an objective function and the blade allowable stress was considered as a constraint. The output power and the starting time were calculated by the blade-element momentum theory and the simple beam theory was employed to compute the stress and deflection along the blade. A genetic algorithm was employed to solve the constrained objective function, finding an optimal blade for which the starting time was small and output power was high while the stress limitation was also met.... 

    Starting improvement of micro-wind turbines operating in low wind speed regions

    , Article International Journal of Green Energy ; Volume 14, Issue 11 , 2017 , Pages 868-877 ; 15435075 (ISSN) Amir Nazmi Afshar, P ; Gooya, M ; Hosseini, S. V ; Pourrajabian, A ; Sharif University of Technology
    Abstract
    The study deals with the design and optimization of external and internal geometry of micro-wind turbines blades. A specified objective function which consists of the power coefficient and the starting time was defined and the genetic algorithm optimization technique in conjunction with the blade-element momentum theory was adopted to find the geometry of the blades including the distributions of the chord, the twist angle and also the shell thickness. Moreover, the allowable stress of the blades was considered as a constraint to the objective function. Results show that a reasonable compromise is achievable such that the starting time of the blades reduces noticeably in return for a small... 

    Atmospheric icing effects of S816 airfoil on a 600 kW wind turbine's performance

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2693-2705 ; 10263098 (ISSN) Ebrahimi, A ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    This study investigates the aerodynamic loads and energy losses of a typical 600 kW wind turbine with S816 airfoil blade under two different icing conditions. Three sections at different radial positions were considered to estimate the icing effect along the blade. Ice accretion simulations in wet and dry regimes were carried out using the NASA LEWICE 3.2 computer program. The airflow simulations were performed with CFD method and SST k -ω turbulence model. The results of these simulations, including streamlines, surface pressure, skin friction, lift, and drag coefficients, were inspected for both clean and iced airfoils. In the case of wet iced airfoil, a separation bubble was created in... 

    An improved actuator disc model for the numerical prediction of the far-wake region of a horizontal axis wind turbine and its performance

    , Article Energy Conversion and Management ; Volume 185 , 2019 , Pages 482-495 ; 01968904 (ISSN) Behrouzifar, A ; Darbandi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Actuator disc models are frequently used to provide a semi-analytical approach to estimating aerodynamic loads on rotary blades. The basic idea is to distribute the aerodynamic loads on a virtual rotating disc instead of simulating the actual rotating blade. These loads are then imposed to represent the source terms of the Navier-Stokes equations, which can be solved numerically using the computational fluid dynamic methods. The thickness of the actuator disk grid is one important factor considerably affecting calculations of the wind turbine rotor. Past researches generally considered the idea of fixed grid thickness exerting along the blade in their actuator disk modeling. However, this... 

    Nonlinear pitch control of a large scale wind turbine by considering aerodynamic behavior of wind

    , Article 9th International Conference on Modern Circuits and Systems Technologies, MOCAST 2020, 7 September 2020 through 9 September 2020 ; 2020 Golnary, F ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this research, nonlinear sliding mode pitch control of a wind turbine has been investigated by considering aerodynamic nonlinearities. For modeling aerodynamic interaction between the wind and the drive-train system, blade element momentum theory is used by considering Prandtl's tip loss factor and Glaurt correction. Finally, the two-degrees of freedom model of the drive-train is extracted and the sliding mode approach is examined for regulating the output power into its nominal value by controlling the pitch angle. The implementation of the above proposed control law in its related electronic circuit of the wind turbine will be considered as the future stage of the current research. ©... 

    Nonlinear pitch angle control of an onshore wind turbine by considering the aerodynamic nonlinearities and deriving an aeroelastic model

    , Article Energy Systems ; 2021 ; 18683967 (ISSN) Golnary, F ; Moradi, H ; Tse, K. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, the control problem of a wind turbine in region 3 (where the wind velocity is between the rated wind velocity and cut out wind velocity) has been investigated by considering the aerodynamic nonlinear behavior of the wind-structure interaction. The model has been developed by using the blade element momentum (BEM) theory to obtain the aerodynamic torque and aerodynamic loads in edgewise and flapwise directions. For validation, the aerodynamic behavior of the onshore NREL 5 MW turbine has been compared with the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) aeroelastic code in terms of the power coefficient. Wind speed is modelled as a three-dimensional profile with...