Loading...
Search for: bond-dissociation
0.006 seconds

    Styrene energetics and characterization of its conjugate base: An example of isotopic labeling gone awry

    , Article International Journal of Mass Spectrometry ; 2016 ; 13873806 (ISSN) Fattahi, A ; Lis, L ; Kass, S. R ; Sharif University of Technology
    Elsevier 
    Abstract
    The equilibrium acidity of styrene was measured (δH°acid(PhCHCH2)=390.6±0.5kcalmol-1) and its deprotonation site was revised from the ortho position on the aromatic ring to the α-hydrogen atom based upon deuterium-labeling studies and extensive computations. Somewhat surprisingly, the nature of the anionic base plays a critical role in properly determining the ionization site and avoiding misleading results due to extraordinary hydrogen-deuterium exchange. Bracketing the electron affinity of α-styryl radical (PhC CH2, 23.1±3.4kcalmol-1) enabled the α-CH bond dissociation energy (100.1±3.4kcalmol-1) of styrene and the effect of a phenyl substituent at an sp2-hybridized carbon to be... 

    Styrene energetics and characterization of its conjugate base: An example of isotopic labeling gone awry

    , Article International Journal of Mass Spectrometry ; Volume 413 , 2017 , Pages 163-167 ; 13873806 (ISSN) Fattahi, A ; Lis, L ; Kass, S. R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The equilibrium acidity of styrene was measured (ΔH°acid(PhCH[dbnd]CH2) = 390.6 ± 0.5 kcal mol−1) and its deprotonation site was revised from the ortho position on the aromatic ring to the α-hydrogen atom based upon deuterium-labeling studies and extensive computations. Somewhat surprisingly, the nature of the anionic base plays a critical role in properly determining the ionization site and avoiding misleading results due to extraordinary hydrogen–deuterium exchange. Bracketing the electron affinity of α-styryl radical (PhC[rad][dbnd]CH2, 23.1 ± 3.4 kcal mol−1) enabled the α-C[sbnd]H bond dissociation energy (100.1 ± 3.4 kcal mol−1) of styrene and the effect of a phenyl substituent at an... 

    Phenylcyclopropane energetics and characterization of its conjugate base: Phenyl substituent effects and the C-H bond dissociation energy of cyclopropane

    , Article Journal of Organic Chemistry ; Volume 81, Issue 19 , 2016 , Pages 9175-9179 ; 00223263 (ISSN) Fattahi, A ; Lis, L ; Kass, S. R ; Sharif University of Technology
    American Chemical Society 
    Abstract
    The α-C-H bond dissociation energy (BDE) of phenylcyclopropane (1) was experimentally determined using Hess' law. An equilibrium acidity determination of 1 afforded ΔH°acid = 389.1 ± 0.8 kcal mol-1, and isotopic labeling established that the α-position of the three-membered ring is the favored deprotonation site. Interestingly, the structure of the base proved to be a key factor in correctly determining the proper ionization site (i.e., secondary amide ions are needed, and primary ones and OH- lead to incorrect conclusions since they scramble the deuterium label). An experimental measurement of the electron affinity of 1-phenylcyclopropyl radical (EA = 17.5 ± 2.8 kcal mol-1) was combined... 

    Binding energy of bipartite quantum systems: Interaction, correlations, and tunneling

    , Article Physical Review A ; Volume 101, Issue 1 , 2020 Afsary, M ; Bathaee, M ; Bakhshinezhad, F ; Rezakhani, A. T ; Bahrampour, A. R ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    We provide a physically motivated definition for the binding energy (or bond dissociation) of a bipartite quantum system. We consider coherently applying an external field to cancel out the interaction between the subsystems, to break their bond and separate them as systems from which no work can be extracted coherently by any cyclic evolution. The minimum difference between the average energies of the initial and final states obtained this way is defined as the binding energy of the system. We show that the final optimal state is a passive state. We discuss how the required evolution can be realized through a sequence of control pulses. The utility of our definition is illustrated through... 

    Theoretical investigation on antioxidant activity of bromophenols from the marine red alga Rhodomela confervoides: H-atom vs electron transfer mechanism

    , Article Journal of Agricultural and Food Chemistry ; Volume 61, Issue 7 , 2013 , Pages 1534-1541 ; 00218561 (ISSN) Javan, A. J ; Javan, M. J ; Tehrani, Z. A ; Sharif University of Technology
    2013
    Abstract
    Bromophenols are known as antioxidant radical scavengers for some biomolecules such as those in marine red alga. Full understanding of the role played by bromophenols requires detailed knowledge of the radical scavenging activities in probable pathways, a focus of ongoing research. To gain detailed insight into two suggested pathways, H-atom transfer and electron transfer, theoretical studies employing first principle quantum mechanical calculations have been carried out on selected bromophenols. Detailed investigation of the aforementioned routes revealed that upon H-atom abstraction or the electron transfer process, bromophenols cause an increase in radical species in which the unpaired... 

    Does gold cluster promote or scavenge radicals? A controversy at DFT

    , Article Journal of Physical Organic Chemistry ; 2017 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO• vs its impacts on RO-H bond dissociation enthalpy, at B3LYP/ LACVP+* level (RH, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O-H bond and the spin density at the RO• oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO-H bond breakage and its scavenging of RO• radical. Since O-Au anchoring... 

    Does gold cluster promote or scavenge radicals? A controversy at DFT

    , Article Journal of Physical Organic Chemistry ; Volume 31, Issue 3 , 2018 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO• vs its impacts on RO–H bond dissociation enthalpy, at B3LYP/ LACVP+* level (R═H, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O–H bond and the spin density at the RO• oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO–H bond breakage and its scavenging of RO• radical. Since O–Au... 

    , M.Sc. Thesis Sharif University of Technology Eiravani, Hossaen (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    It is believed that intramolecular hydrogen bonding and also conjugation can affect the acidity power of organic molecules. But simultaneous effects of intramolecular hydrogen bonding and conjugation have not investigated systematically yet. In this project, we choose Ascorbic acid as a basic structure. Then we have changed its structure conveniently, and have explored the roles of hydrogen bonding and conjugation on the acidity of this molecule by using B3LYP functional with the 6-311++G(d,p) basis set. After that we similarly investigate these effects on the acidity of three different systems, including enols, enamines and alcohols. In this project we probe the effect of different hydrogen... 

    Gold at crossroads of radical generation and scavenging at density functional theory level: Nitrogen and oxygen free radicals versus their precursors in the face of nanogold

    , Article Journal of Physical Organic Chemistry ; Volume 34, Issue 1 , 2021 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Ayoubi Chianeh, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In our previous report (J. Phys. Org. Chem., 2017), we discussed the dual behavior of gold nanocluster (Au3 NC), where it scavenged reactive oxygen species (ROS) while promoted their generation to a lesser extent. Continuing this quest, we investigate the effects of Au3 NC on common reactive nitrogen species (RNS: O=N˙ and O=N-O) and their precursors (O=N-H and O=N-O-H, respectively), at B3LYP/LACVP+* level of theory. We compare the results with those of prevalent ROS (H-O˙ and H-O-O˙) and their precursors (H-O-H and H-O-O-H, respectively). To this end, various parameters are probed such as binding energy (Eb), bond dissociation energy (BDE), bond lengths, Mullikan spin density (MSD),... 

    Gold at crossroads of radical generation and scavenging at density functional theory level: Nitrogen and oxygen free radicals versus their precursors in the face of nanogold

    , Article Journal of Physical Organic Chemistry ; Volume 34, Issue 1 , 2021 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M.Z ; Ayoubi-Chianeh, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In our previous report (J. Phys. Org. Chem., 2017), we discussed the dual behavior of gold nanocluster (Au3 NC), where it scavenged reactive oxygen species (ROS) while promoted their generation to a lesser extent. Continuing this quest, we investigate the effects of Au3 NC on common reactive nitrogen species (RNS: O=N˙ and O=N-O) and their precursors (O=N-H and O=N-O-H, respectively), at B3LYP/LACVP+* level of theory. We compare the results with those of prevalent ROS (H-O˙ and H-O-O˙) and their precursors (H-O-H and H-O-O-H, respectively). To this end, various parameters are probed such as binding energy (Eb), bond dissociation energy (BDE), bond lengths, Mullikan spin density (MSD),... 

    What roles do boron substitutions play in structural, tautomeric, base pairing and electronic properties of uracil? NBO & AIM analysis

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 787-796 ; 08943230 (ISSN) AliakbarTehrani, Z ; Abedin, A ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The synthesis of modified versions of deoxyribonucleic acid is an area that is receiving much attention. The replacement of the nitrogen atom on the nucleobases with boron atom has provided insight into deoxyribonucleic acid and ribonucleic acid stability, recognition, and replication at the atomic level. In the present research, we investigated a detailed density functional theory study of the structural, tautomeric, base-pairing ability, bond dissociation energy, and electronic properties of two boron analogues (i.e., boron substitutions at 4-position and 5-position of uracil) of uracil nucleobase. The effects of these modifications on theirs acid-base properties have been considered. Our... 

    Experimental and computational bridgehead C-H bond dissociation enthalpies

    , Article Journal of Organic Chemistry ; Volume 77, Issue 4 , January , 2012 , Pages 1909-1914 ; 00223263 (ISSN) Fattahi, A ; Lis, L ; Tehrani, Z. A ; Marimanikkuppam, S. S ; Kass, S. R ; Sharif University of Technology
    Abstract
    Bridgehead C-H bond dissociation enthalpies of 105.7 ± 2.0, 102.9 ± 1.7, and 102.4 ± 1.9 kcal mol -1 for bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and adamantane, respectively, were determined in the gas phase by making use of a thermodynamic cycle (i.e., BDE(R-H) = ΔH° acid(H-X) - IE(H •) + EA(X •)). These results are in good accord with high-level G3 theory calculations, and the experimental values along with G3 predictions for bicyclo[1.1.1]pentane, bicyclo[2.1.1]hexane, bicyclo[3.1.1]heptane, and bicyclo[4.2.1]nonane were found to correlate with the flexibility of the ring system. Rare examples of alkyl anions in the gas phase are also provided  

    Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study

    , Article Food Chemistry ; Vol. 165, issue , Dec , 2014 , p. 451-459 Jebelli Javan, Ashkan ; Jebeli Javanb, M ; Sharif University of Technology
    Abstract
    Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of upmost importance in the living cell. Thymol derivatives exhibit various antioxidant activities and potential health benefits. Exploration of structure-radical scavenging activity (SAR) was approached with a wide range of thymol derivatives. To accomplish this task, the DPPH experimental assay along with quantum-chemical calculations were also employed for these compounds. By comparing the structural properties of the derivatives of interest, their antioxidant activity was explained by the formation of an intramolecular hydrogen bond and the presence of unsaturated double bond (–CHdouble bond; length...