Loading...
Search for: bond-strength-model
0.007 seconds

    The effects of elevated temperatures on the performance of concrete-filled pultruded GFRP tubular columns

    , Article Thin-Walled Structures ; Volume 169 , 2021 ; 02638231 (ISSN) Tabatabaeian, M ; Khaloo, A ; Azizmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Usage of concrete-filled pultruded glass fiber-reinforced polymer (GFRP) tubes (CFPGT) as columns can increase the service life of structures. However, marine structures such as oil platforms are always prone to fire because of the low resistance to the elevated temperatures. The purpose of this investigation is to evaluate the effects of concrete core strength (30 and 60 MPa), and exposure temperature (25, 100, 200, 300, and 400 °C) and time (60 and 120 min) on the compressive and bond behavior of CFPGTs. The properties of unexposed and exposed concrete core, pultruded GFRP hollow tubes, and CFPGTs were determined via compressive and disk-split tests. Also, the push-out test was used to... 

    Response of concrete-filled polyethylene tubes under in-service thermal cycles in marine environments

    , Article Marine Structures ; Volume 85 , 2022 ; 09518339 (ISSN) Tabatabaeian, M ; Khaloo, A ; Azizmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Concrete-filled polyethylene (PE) tubes (CFPT) are composite systems using the polyethylene tubes as confinement for the marine structures in the splash zone to extend the service life of structures subjected to harsh environments. However, thermal cycles in marine environments can affect the behavior of such composite systems. This paper evaluates the effect of concrete infill strength (30 MPa and 60 MPa), the number of thermal cycles (50, 100, and 150 cycles) ranging from 25 °C to 60 °C, and thermal cycle type (type A and B) on the compressive and bond response of CFPTs. Characteristics of control and conditioned concrete infill, PE tubes, and CFPTs were obtained by means of compression...