Loading...
Search for: boussinesq-approximation
0.006 seconds

    High gradient temperature thermo-buoyant flow in a square cavity with magnetoconvection using a novel non-boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 64, Issue 3 , 2013 , Pages 255-272 ; 10407782 (ISSN) Hosseinizadeh, S. F ; Hajibagheri, M ; Heidarnataj, M ; Darbandi, M ; Javaherdeh, K ; Sharif University of Technology
    2013
    Abstract
    We study numerically the heat transfer of steady laminar flow in a square cavity filled with electrically conducting fluids, in the presence of an external uniform magnetic field. Imposing a large temperature gradient between two opposite vertical walls, there are substantial temperature and density variations in the domain. The fluid is treated as an ideal gas. Indeed, high temperature gradient thermo-buoyant cavity flows result in natural convection flow domains with high Rayleigh number. To implement the temperature variation effect, the fluid properties, including the conductivity and viscosity coefficients, are considered to vary with temperature in accordance to the Sutherland's law.... 

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Natural convection in circular enclosures heated from below for various central angles

    , Article Case Studies in Thermal Engineering ; Volume 8 , 2016 , Pages 322-329 ; 2214157X (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in circular enclosures filled with water considering different central angles. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1×103 to 1×107. It is shown that decreasing central angle of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of the angle between two sides of the cavity and Ra number using simulation results  

    Numerical simulation of thermobuoyant flow with large temperature variation

    , Article Journal of Thermophysics and Heat Transfer ; Volume 20, Issue 2 , 2006 , Pages 285-296 ; 08878722 (ISSN) Darbandi, M ; Hosseinizadeh, S. F ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2006
    Abstract
    The use of the classical Boussinesq approximation is a straightforward strategy for taking into account the buoyancy effect in incompressible solvers. This strategy is highly effective if density variation is low. However, ignoring the importance of density variation in highly thermobuoyant flow fields can cause considerable deviation from the correct prediction of fluid flow behavior and the accurate estimation of heat transfer rate. In this study, an incompressible algorithm is suitably extended to solve high-density-variation fields caused by strong natural-convection influence. The key point in this research is the way that an ordinary incompressible algorithm is extended to... 

    Numerical experiments with compressible free convection in vertical slots

    , Article 38th AIAA Thermophysics Conference, Toronto, ON, 6 June 2005 through 9 June 2005 ; 2005 ; 9781624100611 (ISBN) Darbandi, M ; Hosseinizadeh, S. F ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2005
    Abstract
    One important heat transfer application in engineering is to predict the flow behavior and heat transfer rate in thin vertical air layers. There are numerous applications in engi- neering where high temperature gradients exist between the slot walls. In such cases, the methods based on simple Boussinesq approximations do not provide reliable predictions. Unfortunately, the compressibility effect in heat transfer rate through thin vertical slots has not been much investigated by the past investigators. In this work, a compressible algorithm is properly developed and utilized to solve compressible natural convection in vertical air layers. The current technique employs discretization equations... 

    Solving combined natural convection-radiation in participating media considering the compressibility effects

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 13- 17 January , 2014 ; ISBN: 9781624102561 Darbandi, M ; Abrar, B ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, we aim to study the effect of temperature gradients on the combined natural convection-radiation heat transfer problem in participating media. To impose this combined effect, we first solve the radiative transfer equation in an absorbing and emitting media. Then, we suitably add the radiation source terms to the energy equation and solve the fluid flow equations. Literature shows that many incompressible algorithms use the Boussinesq assumption to model the thermobuoyant force; however, the validity of this assumption is limited to cases with low temperature gradient distributions. Evidently, Boussinesq assumption would result in considerable errors in high temperature gradient... 

    Effects of insulated and isothermal baffles on pseudosteady-state natural convection inside spherical containers

    , Article Journal of Heat Transfer ; Volume 132, Issue 6 , April , 2010 , Pages 1-10 ; 00221481 (ISSN) Duan, Y ; Hosseinizadeh, S. F ; Khodadadi, J. M ; Sharif University of Technology
    2010
    Abstract
    The effects of insulated and isothermal thin baffles on pseudosteady-state natural convection within spherical containers were studied computationally. The computations are based on an iterative, finite-volume numerical procedure using primitive dependent variables. Natural convection effect is modeled via the Boussinesq approximation. Parametric studies were performed for a Prandtl number of 0.7. For Rayleigh numbers of 104, 105, 106, and 107, baffles with three lengths positioned at five different locations were investigated (120 cases). The fluid that is heated adjacent to the sphere rises replacing the colder fluid, which sinks downward through the stratified stable thermal layer. For...