Loading...
Search for: bubble-regime
0.013 seconds

    Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction

    , Article Contributions to Plasma Physics ; Volume 48, Issue 8 , 2008 , Pages 555-560 ; 08631042 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Yazdani, E ; Rezaei Nasirabad, R ; Sharif University of Technology
    2008
    Abstract
    In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self-focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new... 

    Energy evaluation of mono-energetic electron beam produced by ellipsoid cavity model in the bubble regime

    , Article Contributions to Plasma Physics ; Volume 49, Issue 1-2 , 2009 , Pages 49-54 ; 08631042 (ISSN) Sadighi Bonabi, R ; Rahmatallahpor, S ; Navid, H ; Lotfi, E ; Zobdeh, P ; Reiazie, Z ; Bostandoust, M ; Mohamadian, M ; Sharif University of Technology
    2009
    Abstract
    The electron acceleration in the bubble regime is considered during the laser-plasma interaction. The PIC and experimental results show that the obtained ellipsoid cavity model is more consistent than the spherical model. We prove the fields inside the cavity depend linearly on the coordinates and the spherical cavity is a special case of the ellipsoid model. The quasi mono-energetic electrons output beam tracing the laser plasma can be more appropriately described with this model. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  

    Production of Relativistic Mono-Energetic Electron Beams by Using Terawatt and Femtosecond Laser Pulses

    , M.Sc. Thesis Sharif University of Technology Fanaei, Masoumeh (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    In general cases, the generated electron beam with interaction of high intense and ultra short laser with gas plasma targets has large distributed energy spectrum (100%) that is called Quasi-maxwellian energy spectrum. Recently, in some experimental and 3D-PIC simulation results, a narrow band electron energy spectrum has observed that is called Quasi-monoenergetic electron. We approximated that these electrons have Gaussian distribution. High quality quasi-monoenergetic electron beam can focus in small spot. Therefore, there are many applications such as medical applications, crystallography with electron scattering, spectroscopy with soft energy and ultra fast x-ray, photonuclear... 

    Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model

    , Article Laser and Particle Beams ; Volume 27, Issue 2 , 2009 , Pages 223-231 ; 02630346 (ISSN) Sadighi Bonabi, R ; Navid, H. A ; Zobdeh, P ; Sharif University of Technology
    2009
    Abstract
    In this work, we introduce a new ellipsoid model to describe bubble acceleration of electrons and discuss the required conditions of forming it. We have found that the electron trajectory is strongly related to background electron energy and cavity potential ratio. In the ellipsoid cavity regime, the quality of the electron beam is improved in contrast to other methods, such as that using periodic plasma wakefield, spherical cavity regime, and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola, or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. In the... 

    Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 81, Issue 2 , 2010 ; 10502947 (ISSN) Sadighi Bonabi, R ; Rahmatallahpur, S ; Sharif University of Technology
    Abstract
    The electron acceleration in the bubble regime is considered during the intense laser-plasma interaction. The presented ellipsoid cavity model is more consistent than the previous spherical model, and it explains the monoenergetic electron trajectory more accurately. At the relativistic region, the maximum energy of electrons in the ellipsoid model is about 24% more than the spherical model, and this is confirmed by PIC and the measured experimental results reported here. The electron energy spectrum is also calculated, and it is found that the energy distribution ratio of electrons ΔE/E for the ellipsoid model in the here reported condition is about 11% which is less than the one third that... 

    Electron trajectory evaluation in laser-plasma interaction for effective output beam

    , Article Chinese Physics B ; Volume 19, Issue 6 , 2010 ; 16741056 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2010
    Abstract
    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and...