Search for: buckling-regime
0.006 seconds

    Different buckling regimes in direct electrospinning: A comparative approach to rope buckling

    , Article Journal of Polymer Science, Part B: Polymer Physics ; Volume 54, Issue 4 , 2016 , Pages 451-456 ; 08876266 (ISSN) Shariatpanahi, S. P ; Etesami, Z ; Iraji Zad, A ; Bonn, D ; Ejtehadi, M. R ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Understanding the dynamics of direct electrospinning is the key to control fiber morphologies that are critical for the development of new electrospinning methods and novel materials. Here, we propose the theory for direct electrospinning based on theories for (liquid) "rope coiling" and experimentally test it. For the experiments, the buckling of microscale liquid ropes formed from polymer solutions is studied systematically using three different electrospinning setups and for different polymer concentrations. We show that different buckling regimes exist, whose dynamics are governed by an interplay of electrical, inertial, and viscous forces, and that three different buckling regimes... 

    Investigating the effect of carbon nanotube defects on the column and shell buckling of carbon nanotube-polymer composites using multiscale modeling

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 431-444 ; 15431649 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions...