Loading...
Search for: build-orientation
0.01 seconds

    A framework for multi-objective optimisation of 3D part-build orientation with a desired angular resolution in additive manufacturing processes

    , Article Virtual and Physical Prototyping ; Volume 14, Issue 1 , 2019 , Pages 19-36 ; 17452759 (ISSN) Golmohammadi, A. H ; Khodaygan, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In additive manufacturing processes, the part build orientation (PBO) is one of the most important factors that can affect the characteristics of the quality product such as the amount of support structure and the surface roughness. In most previous methods, the optimal PBO cannot be determined with high precision and accuracy in 3D space. In this paper, to find the precise and accurate optimal PBO with a desired angular accuracy, a new Taguchi-based method, called the Zooming-Taguchi method, is proposed. The proposed simulation-based method can precisely find the optimal PBO in absence of the noise effects. In order to find the optimal PBO with the desired angular resolution, the zooming... 

    Multi-criteria optimization of the part build orientation (PBO) through a combined meta-modeling/NSGAII/TOPSIS method for additive manufacturing processes

    , Article International Journal on Interactive Design and Manufacturing ; 2017 , Pages 1-15 ; 19552513 (ISSN) Khodaygan, S ; Golmohammadi, A. H ; Sharif University of Technology
    Abstract
    Additive manufacturing (AM), is a new technology for the manufacturing of the physical parts through an additive manner. In the AM process, the orientation pattern of the part is an important variable that significantly influences the product properties such as the build time, the surface roughness, the mechanical strength, the wrinkling, and the amount of support material. The build time and the surface roughness are the more important criteria than others that can be considered to find the optimum orientation of parts. The designers and manufacturing engineers usually attempt to find an optimum solution to reach the product with high quality at the minimum time. Determining the optimum... 

    Multi-criteria optimization of the part build orientation (PBO) through a combined meta-modeling/NSGAII/TOPSIS method for additive manufacturing processes

    , Article International Journal on Interactive Design and Manufacturing ; Volume 12, Issue 3 , 2018 , Pages 1071-1085 ; 19552513 (ISSN) Khodaygan, S ; Golmohammadi, A. H ; Sharif University of Technology
    Springer-Verlag France  2018
    Abstract
    Additive manufacturing (AM), is a new technology for the manufacturing of the physical parts through an additive manner. In the AM process, the orientation pattern of the part is an important variable that significantly influences the product properties such as the build time, the surface roughness, the mechanical strength, the wrinkling, and the amount of support material. The build time and the surface roughness are the more important criteria than others that can be considered to find the optimum orientation of parts. The designers and manufacturing engineers usually attempt to find an optimum solution to reach the product with high quality at the minimum time. Determining the optimum... 

    Selection of the Optimal Orientation of Parts in Rapid Prototyping Processes

    , M.Sc. Thesis Sharif University of Technology Amir Hossein Golmohammadi (Author) ; Khodaygan, Saeed (Supervisor)
    Abstract
    Additive manufacturing (AM), also known as Rapid prototyping or D printing, is a new technology for the manufacturing of the physical parts through an additive manner. In the AM process, the orientation pattern of the part is one of the most important factors that significantly affects the product properties such as the build time, the surface roughness, the mechanical strength, the wrinkling, and the amount of support material. The build time and the surface roughness are the more imperative criteria than others that can be considered to find the optimum orientation of parts. In this research, Two method is used to optimize part build orientation (PBO). In the first method a new combined...