Loading...
Search for: building-structure
0.007 seconds

    Investigating the seismic behaviour of Split-Level building structures

    , Article 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, 25 July 2010 through 29 July 2010, Toronto, ON ; Volume 2 , 2010 , Pages 1437-1446 ; 9781617388446 (ISBN) Khonsari, S. V ; England, G. L ; Kiani, M ; Sharif University of Technology
    2010
    Abstract
    The history of the building structures damaged during previous earthquakes reveal that one of the causes of these damages was the existence of some sort of irregularity in the structure of these buildings. In this work, the effects of irregularities due to the split in the levels of various parts of some 2D steel structures (Split Level) on their seismic behaviour are studied. The studied frames consist of five-, ten- and fifteen-storey frames, each with 0, 30, 60, 90, 120, and 150 cm split between the storey levels of the two parts (sides) of the building. The modal analysis of these frames showed that a high percentage of their base shear is transferred to the foundation through the... 

    An investigation on the accuracy of pushover analysis for estimating the seismic deformation of braced steel frames

    , Article Journal of Constructional Steel Research ; Volume 62, Issue 4 , 2006 , Pages 343-351 ; 0143974X (ISSN) Moghaddam, H ; Hajirasouliha, I ; Sharif University of Technology
    Elsevier BV  2006
    Abstract
    This paper investigates the potentialities of the pushover analysis to estimate the seismic deformation demands of concentrically braced steel frames. Reliability of the pushover analysis has been verified by conducting nonlinear dynamic analysis on 5, 10 and 15 story frames subjected to 15 synthetic earthquake records representing a design spectrum. It is shown that pushover analysis with predetermined lateral load pattern provides questionable estimates of inter-story drift. To overcome this inadequacy, a simplified analytical model for seismic response prediction of concentrically braced frames is proposed. In this approach, a multistory frame is reduced to an equivalent shear-building... 

    Soil-Structure interaction effect on fragility curve of 3D models of concrete moment-resisting buildings

    , Article Shock and Vibration ; Volume 2018 , 2018 ; 10709622 (ISSN) Anvarsamarin, A ; Rahimzadeh Rofooei, F ; Nekooei, M ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    This paper presents the probabilistic generation of collapse fragility curves for evaluating the performance of 3D, reinforced concrete (RC) moment-resisting building models, considering soil-structure interaction (SSI) by concentration on seismic uncertainties. It considers collapse as the loss of lateral load-resisting capacity of the building structures due to severe ground shaking and consequent large interstory drifts intensified by P-Δ effects as well as the strength and stiffness deterioration of their lateral load carrying systems. The estimation of the collapse performance of structures requires the relation between the intensity measure (IM) and the probability of collapse... 

    Endurance time method for multi-component analysis of steel elastic moment frames

    , Article Scientia Iranica ; Volume 18, Issue 2 A , 2011 , Pages 139-149 ; 10263098 (ISSN) Valamanesh, V ; Estekanchi, H. E ; Sharif University of Technology
    Abstract
    The Endurance Time (ET) method is a time history-based dynamic analysis procedure which uses special intensifying acceleration functions for evaluation of the seismic response of structures. One of the potential applications of the ET method is in the three-dimensional analysis of buildings under multidirectional excitations. In this paper, considering horizontal components of excitation, an algorithm for the multi-component analysis of building structures by the ET method is proposed, and results of the ET method for various steel moment frames with 1 to 7 stories are compared with results from time history analysis with real earthquakes. Results show that based on recommendations of... 

    On the equivalent simple models of braced steel shear panels

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 168, Issue 8 , August , 2015 , Pages 570-577 ; 09650911 (ISSN) Hamed, A. A ; Mofid, M ; Sharif University of Technology
    Thomas Telford Services Ltd  2015
    Abstract
    Through the combination of two types of seismic resisting systems including braced frames and steel shear walls, braced steel shear panel systems can be formed. This new lateral load-resisting system solves some of the defects of current special steel shear walls, such as imposing significant loads on boundary elements along with gravity load effects. Analysis and design of this new structural system underline the importance of having simple and precise finite-element models. To this aim, this paper presents two types of equivalent braced frames termed ‘overall equivalent brace’ and ‘equivalent mid-brace’. The equations of brace area, material strength and strain-hardening ratio are obtained... 

    Plastic design of eccentrically braced frames with shear panels

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 170, Issue 1 , 2017 , Pages 17-32 ; 09650911 (ISSN) Akbari Hamed, A ; Mofid, M ; Sharif University of Technology
    Thomas Telford Services Ltd  2017
    Abstract
    This paper introduces a new earthquake-resistant building design featuring eccentrically braced frames with steel wall shear panels. It also proposes closed-form expressions for analysis and extension of the existing failure mode control design method for the new structural system. Closed-form equations for internal forces were obtained, and probable failure mechanisms and corresponding lateral load multipliers for secondary effects were identified. Selection of member profiles was completed by the mechanism equilibrium curve concept. Pushover modelling was then performed with plastic hinge distribution corresponding to failure mechanisms. Only small differences were found between the... 

    In-flight estimation of time-varying aircraft center of gravity position based on kinematics approach

    , Article Journal of Aircraft ; Volume 55, Issue 5 , 2018 , Pages 2037-2049 ; 00218669 (ISSN) Dehghan Manshadi, A ; Saghafi, F ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    In-flight aircraft center of gravity (COG) position estimation is investigated in this study based on the kinematics approach. The Quad-M basics of system identification requirements are carefully investigated for time-invariant and time-varying COG estimation during airdrop maneuver as a case study that contains both conditions. Modeling and simulation of airdrop maneuver are employed to prepare the required maneuver and measurement data for this investigation. The relative-acceleration equation, as a model structure, and parameter modeling of time-varying COG location and acceleration are introduced into the system identification and parameter estimation framework. The Kalman filter method... 

    A novel building information modeling-based method for improving cost and energy performance of the building envelope

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 33, Issue 11 , 2020 , Pages 2162-2173 Kharazi, B. A ; Alvanchi, A ; Taghaddos, H ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    Building envelopes and regional conditions can significantly contribute to the cost and energy performance of the buildings. Structured methods that take into account the impacts of both the envelope materials and the regional conditions to find the most feasible envelope materials within a region, however, are still missing. This study responds to this need by proposing a novel method using the capabilities of Building Information Modeling (BIM). The proposed method is used for identifying cost- and energy-efficient building envelope materials within a region over the life cycle. First, commonly used envelope materials in a region are identified. Then, BIM is employed for simulating the... 

    Optimum seismic design of steel framed-tube and tube-in-tube tall buildings

    , Article Structural Design of Tall and Special Buildings ; Volume 29, Issue 14 , 2020 Sarcheshmehpour, M ; Estekanchi, H. E ; Moosavian, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code-compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20-, 40-, and 60-story buildings with a framed tube as well as a tube-in-tube system. Such a design gives rise to a basis for the fair... 

    Multi-agent programming to enhance resiliency of earthquake-prone old metropolitan areas by transit-oriented development under public-private partnership

    , Article European Journal of Transport and Infrastructure Research ; Volume 21, Issue 1 , 2021 , Pages 19-52 ; 15677141 (ISSN) Soleimani, H ; Poorzahedy, H ; Sharif University of Technology
    TU Delft  2021
    Abstract
    Deteriorated urban areas in large cities have poor living standards, are inaccessible and small-sized, and have unstable building structures. Earthquake hazards may turn such situations into human disasters. In most cases, neither the governments nor the owners of these properties have enough budgets for renovating them. The purpose of this paper is to take advantage of Transit Oriented Development concepts to simultaneously solve two major urban area problems: (a) renovation of deteriorated urban areas and prevention of urban sprawl, and (b) design of transit network and promotion of transit-oriented development to reduce traffic congestion, pollution, and other unwanted outcomes of the... 

    Investigation into the 3D behaviour of split-level steel building structures: introducing the LBDM

    , Article International Journal of Steel Structures ; Volume 22, Issue 3 , 2022 , Pages 833-850 ; 15982351 (ISSN) Khonsari, S. V ; Eskandaritorbaghan, F ; Sharif University of Technology
    Korean Society of Steel Construction  2022
    Abstract
    Irregular buildings constitute a large portion of the modern urban structures. Based on experiences of past earthquakes, irregular configuration of buildings or asymmetrical distribution of structural properties trigger an increase in seismic demand, intensifying the vulnerability of the structure. In this work, the effects of splitting in levels, classified as vertical irregularity, on the seismic behaviour of some 3D steel structures are studied. Studied models consisted of five-, ten- and fifteen-storey 3D steel special moment-resisting frames, split just in one direction, with six different plans. Equivalent static method together with a special pattern for distributing the base shear,...