Loading...
Search for: buoyancy-force
0.013 seconds

    Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 139, Issue 5 , 2020 , Pages 3331-3343 Mousavi, S. M ; Biglarian, M ; Rabienataj Darzi, A. A ; Farhadi, M ; Hassanzadeh Afrouzi, H ; Toghraie, D ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    This paper presents the effects of a non-uniform magnetic field on the hydrodynamic and thermal behavior of ferrofluid flow in a wavy channel by 3D numerical simulation. The wavy surfaces at the top and bottom of the channel are heated by constant heat fluxes. Moreover, the sidewalls are adiabatic. In the wavy section, in the perpendicular direction of the main flow, the magnetic field that linearly varies along the direction of the main flow is applied. The mathematical model that is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics is used for the problem formulation. The results indicate that the wavy wall enhances the heat transfer rate on the bottom of the... 

    Optimization of the bubble radius in a moving single bubble sonoluminescence

    , Article Physica Scripta ; Volume 83, Issue 5 , 2011 ; 00318949 (ISSN) Mirheydari, M ; Sadighi Bonabi, R ; Rezaee, N ; Ebrahimi, H ; Sharif University of Technology
    Abstract
    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases  

    Hydrodynamics of secondary settling tanks and increasing their performance using baffles

    , Article Journal of Environmental Engineering ; Volume 136, Issue 1 , 2010 , Pages 32-39 ; 07339372 (ISSN) Tamayol, A ; Firoozabadi, B ; Ashjari, M. A ; Sharif University of Technology
    Abstract
    Generally, the flow in settling tanks is stratified, but the effect of buoyancy force on the flow field depends on the inlet concentration of particles and flow bulk velocity. A common approach for increasing settling tanks performance is to use baffles which can reduce effects of the unfavorable phenomena such as short circuiting between inlet and outlet and density currents in primary and secondary settling tanks, respectively. The suitable position of the baffles is related to the importance of buoyancy force. As a result, effects of inlet Reynolds and Froude numbers on the strength of buoyancy force are studied for a secondary settling tank and the results show that neither Reynolds nor... 

    Bubble dynamics in rotating flow under an accelerating field

    , Article Physics of Fluids ; Volume 30, Issue 8 , 2018 ; 10706631 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Three-dimensional bubble dynamics in rotating flow under an accelerating field such as a centrifugal one is studied in this work. We employ the lattice Boltzmann method in two phase flows to simulate bubble dynamics for different Bond and Morton numbers of 0.1, 1, 10, and 100 and 0.001, 0.01, 0.1, 1, 10, and 100, respectively. Another dimensionless number named as dimensionless force, F∗, which is the ratio of buoyancy force to centripetal force is defined to explain the dynamics of the bubbles. In this work, we consider 5×10-7≤F∗≤5. The results show that bubbles in rotating flows have different kinds of motions such as spinning, rotating, and translating. Based on the ratios of the forces... 

    An updated Lagrangian finite element formulation for large displacement dynamic analysis of three-dimensional flexible riser structures

    , Article Ocean Engineering ; Volume 38, Issue 5-6 , 2011 , Pages 793-803 ; 00298018 (ISSN) Hosseini Kordkheili, S. A ; Bahai, H ; Mirtaheri, M ; Sharif University of Technology
    Abstract
    An updated Lagrangian finite element formulation of a three-dimensional annular section beam element is presented for large displacement and large rotation dynamic analyses of flexible riser structures. In this formulation a new linearization method is used to avoid inaccuracies normally associated with other linearization schemes. The effects of buoyancy force as well as steady state current loading are considered in the finite element solution for riser structures response. The formulation has been implemented in a nonlinear finite element code and the results are compared with those obtained from other schemes reported in the literature  

    Mixed convection cooling of a heated circular cylinder by laminar upward-directed slot jet impingement

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 2 , 2009 , Pages 225-236 ; 09477411 (ISSN) Amiri, S ; Habibi, K ; Faghani, E ; Ashjaee, M ; Sharif University of Technology
    Abstract
    An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach-Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is... 

    Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 2 , 2020 , Pages 372-378 Shamloo, A ; Besanjideh, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Negative magnetophoresis is a novel and attractive method for continuous microparticle sorting inside a magnetic medium. In this method, diamagnetic particles are sorted based on their sizes using magnetic buoyancy force and without any labeling process. Although this method provides some attractive features, such as low-cost fabrication and ease of operation, there are some obstacles that adversely affect its performance, especially for biological applications. Most types of magnetic media, such as ferrofluids, are not biocompatible, and the time-consuming process of sample preparation can be threatening to the viability of the cells within the sample. Furthermore, in this method, both the...