Loading...
Search for: burst-synchronization
0.008 seconds

    Emergence of bursting in two coupled neurons of different types of excitability

    , Article Chaos, Solitons and Fractals ; Volume 132 , 2020 Razvan, M. R ; Yasaman, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this manuscript, a spiking neuron of type I excitability and a silent neuron of type II excitability are coupled through a gap junction with unequal coupling strengths, and none of the coupled neurons can burst intrinsically. By applying the theory of dynamical systems (e.g. bifurcation theory), we investigate how the coupling strength affects the dynamics of the neurons, when one of the coupling strengths is fixed and the other varies. We report four different regimes of oscillations as the coupling strength increases. (1) Spike–Spike Phase–Locking, where both neurons are in tonic spiking mode but with different frequencies; (2) Spike–Burst mode, where the type II neuron bursts while the... 

    Dynamics of Two Coupled Neurons of Different Types of Excitability

    , Ph.D. Dissertation Sharif University of Technology Yasaman, Somayeh (Author) ; Razvan, Mohammad Reza (Supervisor)
    Abstract
    Excitability is one of the most important characteristics of a neuron. In 1948, Hodgkin identified three different types of excitability of neurons. Excitability an all of its types can be observed in Hodgkin-Huxley model of neuronal dynamics (H-H model) as a four-dimensional system of differential equations and in at least two dimensional reductions of H-H type models. By applying the theory of dynamical systems (e.g. bifurcation theory), one can give a mathematical definition of excitability.Excitability of the neuron is equivalent to that the neuronal model is near a bifurcation through which the state of the system approaches to a stable limit cycle. In this thesis, a two-dimensional...