Loading...
Search for: cake-layers
0.005 seconds

    Influence of suspended carrier on membrane fouling and biological removal of styrene and ethylbenzene in MBR

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 64 , 2016 , Pages 59-68 ; 18761070 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers 
    Abstract
    In this study, the biological removal of styrene (STR) and ethylbenzene (EB) was investigated and the effect of carriers on the membrane fouling (MF) and the performance of two MBRs (with and without carrier) were examined. The flocculation ability, sludge particle size distribution (PSD), FTIR analysis, excitation-emission matrix (EEM) fluorescence spectroscopy, microscopic observations, microbial activities, microorganism population, filamentous bacteria, and sludge volume index (SVI) are considered to determine sludge characteristics. The results show that adding suitable dosage of carrier can reduce MF. It was also demonstrated that, biodegradation was the main mechanism for the STR in... 

    The combination of KMnO4 oxidation and polymeric flocculation for the mitigation of membrane fouling in a membrane bioreactor

    , Article Separation and Purification Technology ; Volume 159 , 2016 , Pages 124-134 ; 13835866 (ISSN) Zarei baygi, A ; Moslemi, M ; Mirzaei, S. H ; Sharif University of Technology
    Elsevier 
    Abstract
    KMnO4 oxidation combined with polyelectrolyte (K530CF) flocculation was investigated to mitigate membrane fouling in a membrane bioreactor. The optimum dosages of chemical additives in order to enhance the removal of soluble microbial products (SMPs) were determined. This method was able to reduce the concentration of COD in the effluent to 57.1% and 51.1% lower than those in the experiments in the absence of chemical flocculants and in the presence of polyelectrolyte, respectively. NH3-N removal was improved by combining KMnO4 and K530CF. When KMnO4 was used along with polyelectrolyte, the zeta potential was neutralized to a greater extent which resulted in an improvement in the... 

    Modeling of transient permeate flux decline during crossflow microfiltration of non-alcoholic beer with consideration of particle size distribution

    , Article Journal of Membrane Science ; Volume 411-412 , September , 2012 , Pages 13-21 ; 03767388 (ISSN) Kazemi, M. A ; Soltanieh, M ; Yazdanshenas, M ; Sharif University of Technology
    2012
    Abstract
    Crossflow microfiltration of non-alcoholic beer is investigated numerically and it has been verified by experimental data. Due to the presence of particles with different sizes in feed suspension, a modified combination of three mechanisms of particle back-diffusion is developed to predict particle deposition and cake layer buildup during the process. The simulation results show that smaller particles (about 1μm) are the main contributor to the cake layer due to a minimum in back transport and are the main reason of the flux decline. On the other hand, larger particles (a p>20μm) are swept away along the membrane during the filtration process and move toward the membrane exit due to the... 

    Cross-flow microfiltration of rough non-alcoholic beer and diluted malt extract with tubular ceramic membranes: Investigation of fouling mechanisms

    , Article Journal of Membrane Science ; Volume 362, Issue 1-2 , 2010 , Pages 306-316 ; 03767388 (ISSN) Yazdanshenas, M ; Soltanieh, M ; Tabatabaei Nejad, S. A. R ; Fillaudeau, L ; Sharif University of Technology
    2010
    Abstract
    The clarification of rough non-alcoholic beer (RNAB) and diluted malt extract (DME) was investigated in a pilot plant consisting of a tubular ceramic membrane with nominal pore diameter of 0.45μm. The results of the primary experiments show that the concentration of suspended particles in the RNAB (∼0.05kg/m3) and DME (∼0.2kg/m3) correlates proportionally to turbidity (in NTU) with the factor of 4.45×10-4 (kgm-3NTU-1). During cross-flow microfiltration (CFMF), flux declined drastically with time due to fouling mechanisms and propensity. According to the characterizing curve of log(d2t/dV2) versus log(dt/dV), fouling is initiated by penetration of aggregates through the membrane surface,... 

    Effective factors in the treatment of kerosene-water emulsion by using UF membranes

    , Article Journal of Hazardous Materials ; Volume 161, Issue 2-3 , 2009 , Pages 1216-1224 ; 03043894 (ISSN) Rezvanpour, A ; Roostaazad, R ; Hesampour, M ; Nyström, M ; Ghotbi, C ; Sharif University of Technology
    2009
    Abstract
    The effects of different parameters including membrane type (regenerated cellulose and polysulphone), transmembrane pressure (TMP), the content of oil in the feed, the flow velocity of the feed and pH on the ultrafiltration of an emulsion of kerosene in water were studied. It was found that the important factors affecting ultrafiltration were, in order, membrane type, pressure and oil concentration. The greatest flux at the optimum conditions here of 3 bar, an oil content of 3% (v/v) and with membrane type C30F was predicted as 108 L/(m2 h) that was within the range of the confidence limit of the measured value of 106 L/(m2 h). The normalised FTIR results of the virgin cellulosic membranes...