Loading...
Search for: calculation-code
0.011 seconds

    Neutronics Calculations of Prismatic High-temperature Gas Cooled Reactor by Deterministic Method Using DONJON and DRAGON Codes and Comparison with Results of Probabilistic Methods (Monte Carlo).

    , M.Sc. Thesis Sharif University of Technology Mansouri Hassan Abadi, Javad (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    HTGRs are considered as 4th generation reactors which have prominent characteristics such as inherent safety, lower safety costs, High efficiency and high temperature applications. the most important challenges in developing these reactors is providing appropriate codes in design, simulating their performance and analysis of them. In this thesis, a japanese prismatic HTTR reactor has been selected as a reference reactor and the neurotic’s calculations implementation studied at cold zero power (CZP) and hot full power (HFP) states using DRAGON cell calculation codes and DONJON core computations. At CZP state, One group and two group radial & axial flux distribution, control rod critical... 

    Optimization of Fuel Arrangement of Second Cycle of Bushehr Power Plant with Utilization Data

    , M.Sc. Thesis Sharif University of Technology Sarmast, Asgar (Author) ; Vosoughi, Naser (Supervisor) ; Hosseini, Abolfazl (Co-Advisor)
    Abstract
    One of the ways to enhance the safety and economic performance of nuclear power plants, is to choose an appropriate policy for arrange the reactor fuel assembly in the beginning of each cycle. There are variety of ways to optimize the layout of the fuel in the reactor core, but to achieve more than one goal, choosing multi-objective method can be used.One of the intelligent optimization methods is the genetic algorithms that emulate nature of biological processes and can be used to optimize two or more of the target.The goals of this research is to increase the neutron multiplication factor is to make maximum use of the fuel in the reactor and maintain the radial power peaking factor for... 

    Kinetic parameters evaluation of PWRs using static cell and core calculation codes

    , Article Annals of Nuclear Energy ; Volume 41 , 2012 , Pages 110-114 ; 03064549 (ISSN) Jahanbin, A ; Malmir, H ; Sharif University of Technology
    Abstract
    In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C# computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for... 

    Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    , Article Annals of Nuclear Energy ; Volume 36, Issue 7 , 2009 , Pages 923-930 ; 03064549 (ISSN) Babazadeh, D ; Boroushaki, M ; Lucas, C ; Sharif University of Technology
    2009
    Abstract
    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (Keff) in order to extract the maximum energy, and keeping the local power peaking factor (Pq) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization... 

    Neutron spectroscopy with soft computing: Development of a computational code based on Support Vector Machine (SVM) for reconstruction of neutron energy spectrum

    , Article Journal of Instrumentation ; Volume 14, Issue 2 , 2019 ; 17480221 (ISSN) Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This paper presents a developed computational code based on Support Vector Machine (SVM) for reconstruction of energy spectrum of neutron source. To reconstruct unknown energy spectrum using known neutron pulse height distribution, the developed machine is trained by known neutron pulse height distribution of detector and corresponding energy spectrum of neutron source. Validation and testing are the next steps to verify the validity of the calculations done with the developed computational code. The calculated neutron pulse height distributions due to randomly generated energy spectrum using MCNPX-ESUT (MCNPX-Energy engineering of Sharif University of Technology) computational code are used...