Loading...
Search for: calculus-of-variations
0.005 seconds

    Leakage-aware battery lifetime analysis using the calculus of variations

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 67, Issue 12 , June , 2020 , Pages 4829-4841 Jafari Nodoushan, M ; Safaei, B ; Ejlali, A ; Chen, J.-J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Due to non-linear factors such as the rate capacity and the recovery effect, the shape of the battery discharge curve plays a significant role in the overall lifetime of the batteries. Accordingly, this paper proposes a simple heuristic battery-aware speed scheduling policy for periodic and non-periodic real-time tasks in Dynamic Voltage Scaling (DVS) systems with non-negligible leakage/static power. A set of comprehensive analysis has been conducted to compare the battery efficiency of the proposed policies with an optimal solution, which could be derived via the Calculus of Variations (CoV). These evaluations have taken into account both periodic and non-periodic tasks in DVS-based... 

    Surface waves on a half-space due to a time-harmonic loading on an inertial strip foundation

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 135, Issue 5 , 2013 ; 10489002 (ISSN) Dehestani, M ; Vafai, A ; Choobbasti, A. J ; Malidarreh, N. R ; Szidarovszky, F ; Sharif University of Technology
    2013
    Abstract
    An analytical approach has been applied to obtain the solution of Navier's equation for a homogeneous, isotropic half-space under an inertial foundation subjected to a timeharmonic loading. Displacement potentials were used to change the Navier's equation to a system of wave-type equations. Calculus of variation was employed to demonstrate the contribution of the foundation's inertial effects as boundary conditions. Use of the Fourier transformation method for the system of Poisson-type equations and applying the boundary conditions yielded the transformed surface displacement field. Direct contour integration has been employed to achieve the surface waves. In order to clarify the... 

    Optimized compact-support interpolation kernels

    , Article IEEE Transactions on Signal Processing ; Volume 60, Issue 2 , November , 2012 , Pages 626-633 ; 1053587X (ISSN) Madani, R ; Ayremlou, A ; Amini, A ; Marvasti, F ; Sharif University of Technology
    2012
    Abstract
    In this paper, we investigate the problem of designing compact-support interpolation kernels for a given class of signals. By using calculus of variations, we simplify the optimization problem from an nonlinear infinite dimensional problem to a linear finite dimensional case, and then find the optimum compact-support function that best approximates a given filter in the least square sense (ℓ 2 norm). The benefit of compact-support interpolants is the low computational complexity in the interpolation process while the optimum compact-support interpolant guarantees the highest achievable signal-to-noise ratio (SNR). Our simulation results confirm the superior performance of the proposed kernel... 

    Optimized wavelet denoising for self-similar α-stable processes

    , Article IEEE Transactions on Information Theory ; Volume 63, Issue 9 , 2017 , Pages 5529-5543 ; 00189448 (ISSN) Pad, P ; Alishahi, K ; Unser, M ; Sharif University of Technology
    Abstract
    We investigate the performance of wavelet shrinkage methods for the denoising of symmetric- α -stable (S αS) self-similar stochastic processes corrupted by additive white Gaussian noise (AWGN), where α is tied to the sparsity of the process. The wavelet transform is assumed to be orthonormal and the shrinkage function minimizes the mean-square approximation error (MMSE estimator). We derive the corresponding formula for the expected value of the averaged estimation error. We show that the predicted MMSE is a monotone function of a simple criterion that depends on the wavelet and the statistical parameters of the process. Using the calculus of variations, we then optimize this criterion to... 

    An optimal analytical solution for maximizing expected battery lifetime using the calculus of variations

    , Article Integration ; Volume 71 , March , 2020 , Pages 86-94 Jafari Nodoushan, M ; Ejlali, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The exponential growth in the semiconductor industry and hence the increase in chip complexity, has led to more power usage and power density in modern processors. On the other hand, most of today's embedded systems are battery-powered, so the power consumption is one of the most critical criteria in these systems. Dynamic Voltage and Frequency Scaling (DVFS) is known as one of the most effective energy-saving methods. In this paper, we propose the optimal DVFS profile to minimize the energy consumption of a battery-based system with uncertain task execution time under deadline constraints using the Calculus of Variations (CoV). The contribution of this work is to analytically calculate the... 

    Joint edge detection and motion estimation of cardiac MR image sequence by a phase field method

    , Article Computers in Biology and Medicine ; Volume 40, Issue 1 , 2010 , Pages 21-28 ; 00104825 (ISSN) Eslami, A ; Jahed, M ; Preusser, T ; Sharif University of Technology
    Abstract
    In this paper a variational framework for joint segmentation and motion estimation is employed for inspecting heart in Cine MRI sequences. A functional including Mumford-Shah segmentation and optical flow based dense motion estimation is approximated using the phase-field technique. The minimizer of the functional provides an optimum motion field and edge set by considering both spatial and temporal discontinuities. Exploiting calculus of variation principles, multiple partial differential equations associated with the Euler-Lagrange equations of the functional are extracted, first. Next, the finite element method is used to discretize the resulting PDEs for numerical solution. Several...