Loading...
Search for: carbon-depositions
0.005 seconds

    Experimental investigation of asphaltene-induced core damage during miscible CO2 injection

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 13 , 2014 , pp. 1395-1405 ; ISSN: 15567036 Bolouri, H ; Ghoodjani, E ; Sharif University of Technology
    Abstract
    In this article, dynamic core flood experiments in miscible CO2 condition were carried out to investigate core damage due to asphaltene deposition. Carbonate and sandstone cores were used to study of effect of core characteristic on permeability and porosity reduction. The experimental results show asphaltene deposition preferentially in sandstone core type takes place in the first half of the core while in the carbonate one it occurs in the second half. In spite of asphaltene content measurement results (IP-143) that show higher asphaltene deposition in sandstone cores, permeability impairment compared to the carbonate one is severe. Also, permeability-porosity reduction models are affected... 

    Influence of metal loading and reduction temperature on the performance of mesoporous NiO–MgO–SiO2 catalyst in propane steam reforming

    , Article Journal of the Energy Institute ; Volume 96 , 2021 , Pages 38-51 ; 17439671 (ISSN) Barzegari, F ; Farhadi, F ; Rezaei, M ; Kazemeini, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this research, a series of NiO–MgO–SiO2 catalyst samples with various nickel contents (5, 10, 15 and 20 wt %) were prepared by a co-precipitation method followed by a hydrothermal treatment and employed in propane steam reforming. The analyses revealed that the enhancement of the nickel content up to 15 wt % improved the propane conversion to 98.6% at 550 °C. Nonetheless, further increase in the nickel loading reduced the catalyst activity due to the formation of larger and more poorly dispersed active sites. Besides, 15 wt % nickel loading led to the high resistance against coke deposition with no detectable carbon on the catalyst surface. In addition, it was revealed that, the decrease... 

    Microwave-Assisted Coke Resistance and Mesoporous Ni-Co Catalyst in two Steps for Methane Steam Reforming

    , M.Sc. Thesis Sharif University of Technology Etminan, Azita (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Methane steam reforming (MSR) is an assuring reaction using steam to produce H2 as clean energy over a nickel-based catalyst. We synthesized monometallic NiMgAl2O4 and bimetallic NiCoMgAl2O4 catalysts in a two-step combustion method using urea, glycine, and sucrose, as fuel. BET-BJH, XRD, TGA, TPR, FESEM, and EDX-mapping characterized surface area, porosity, morphology, crystalline structure, and metal-support interaction behavior. The products exhibited well-structured, simple MgAl2O4 spinel and NiO without NiAl2O4, in both specimens. The MSR evaluation tests at 750℃ under atmospheric pressure, CH4: H2O feed ratio of 1:1.6 showed the bimetallic catalyst has the highest conversion (99.30%)... 

    An experimental investigation of permeability impairment under dynamic flow conditions due to natural depletion in an Iranian oilfield

    , Article Petroleum Science and Technology ; Volume 31, Issue 3 , 2013 , Pages 250-261 ; 10916466 (ISSN) Khalifeh, M ; Bagherzadeh, H ; Bolouri, H ; Sharif University of Technology
    2013
    Abstract
    Asphaltene deposition is an issue that has received much attention since it has been shown to be the cause of major production problems. It leads to permeability reduction under the processes of natural depletion as well as hydrocarbon gas/CO2 injection. Though a great deal of researches have focused on studying permeability impairment in reservoir rocks, little is known about the asphaltene deposition mechanisms that control the permeability reduction for Iranian reservoirs. In this work, an experimental effort is made to investigate the permeability impairment of core samples of Iranian oil reservoirs. The experiments are performed on both sandstone and carbonate rock types at reservoir... 

    Physical properties of sputtered amorphous carbon coating

    , Article Journal of Alloys and Compounds ; Volume 513 , 2012 , Pages 135-138 ; 09258388 (ISSN) Yari, M ; Larijani, M. M ; Afshar, A ; Eshghabadi, M ; Shokouhy, A ; Sharif University of Technology
    Abstract
    In this study the effect of deposition temperature and thickness on the physical properties of carbon films deposited by magnetron sputtering PVD was investigated. The results of Raman spectra and grazing incidence XRD (GIXRD) patterns show that the graphitization increases by increasing the deposition temperature. There is a change in deposition mechanism at 400 °C from amorphous carbon deposition to nano-structured graphite deposition. Also by increasing substrate temperature the electrical resistance of carbon films reduces significantly up to 300 °C and then remains largely constant. High intrinsic compressive stress in low temperature deposited carbon films causes cracks and... 

    Metallurgical characteristics and failure mode transition for dissimilar resistance spot welds between ultra-fine grained and coarse-grained low carbon steel sheets

    , Article Materials Science and Engineering A ; Volume 637 , 2015 , Pages 12-22 ; 09215093 (ISSN) Khodabakhshi, F ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    We studied the microstructure and mechanical characteristics of spot welded specimens, fabricated from low carbon steel sheets with different microstructures. Both ultra-fine grained (UFG) steel sheet and coarse grained (CG) steel sheet were used. The refined microstructure of the UFG steel has been produced by severe plastic deformation (SPD) using the constrained groove pressing (CGP) method. The grain size of the base metals was approximately 260. nm and 30. μm in diameter, respectively, in the UFG and CG steels. Examining the microstructure of a cross section cut through the spot weld reveals a similar grain size and phase distribution in the nugget on both the sides of the initial... 

    Propane steam reforming on mesoporous NiO–MgO–SiO2 catalysts for syngas production: Effect of the MgO/SiO2 molar ratio

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 46 , 2020 , Pages 24840-24858 Barzegari, F ; Kazemeini, M ; Rezaei, M ; Farhadi, F ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, a series of NiO-xMgO-SiO2 catalysts with various MgO/SiO2 molar ratios were prepared via precipitation method followed by a hydrothermal treatment in the presence of PVP as surfactant. The synergic effect between MgO and SiO2 leading to the various characteristic and catalytic performance during propane steam reforming was investigated in detail. The results showed that 15 wt% NiO-0.5MgO–SiO2 catalyst possessed the highest catalytic activity (68.9% conversion for C3H8 at 550 °C) with a negligible amount of carbon formation after 20 h of reaction duration. This superior catalytic performance can be attributed to the enhanced basicity strength along with strong metal-support... 

    Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer

    , Article Energy Conversion and Management ; Volume 67 , 2013 , Pages 197-207 ; 01968904 (ISSN) Vatani, A ; Khazaeli, A ; Roshandel, R ; Panjeshahi, M. H ; Sharif University of Technology
    2013
    Abstract
    This work deals with waste heat recovery from a proposed direct internal reforming molten carbonate fuel cell (DIR-MCFC), including an integrated pre-reformer. In this regard, some advantages are attainable over exhaust gas recycling. For instance, due to low temperature in the pre-reformer, carbon deposition and coke formation resulting from higher hydrocarbons can be eliminated. In this study, the cathode outlet provides the heat requirement for the pre-reforming process. After partial heat recovery from the cathode outlet, the stream still has a considerable energy and exergy (352.55 °C and 83.687 kW respectively). This study investigates waste heat recovery from the proposed DIR-MCFC,... 

    Numerical simulation of nano-carbon deposition in the thermal decomposition of methane

    , Article International Journal of Hydrogen Energy ; Volume 33, Issue 23 , December , 2008 , Pages 7027-7038 ; 03603199 (ISSN) Homayonifar, P ; Saboohi, Y ; Firoozabadi, B ; Sharif University of Technology
    2008
    Abstract
    A comparison of various hydrogen production processes indicates that the thermal decomposition of methane (TDM) provides an attractive option from both economical and technical points of view. The main problem for this process is the deposition of the nano-carbon particles on the reactor wall (or catalyst surface). This research concentrates on the numerical simulation of the TDM process without use of a catalyst to find a technique that decreases the carbon accumulation in a tubular reactor. In this model, the produced carbon particles are tracked with the Lagrangian method under thermophoretic, Brownian, van der Waals, Basset, drag, lift, gravity, pressure and virtual mass forces. In...