Loading...
Search for: carbon-papers
0.009 seconds

    Modeling, design and fabrication of non-uniform catalyst layers for PEM fuel cells

    , Article ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010, 14 June 2010 through 16 June 2010 ; Volume 1 , 2010 , Pages 697-705 ; 9780791844045 (ISBN) Roshandel, R ; Advanced Energy Systems Division ; Sharif University of Technology
    Abstract
    Catalyst layers are one of the most important parts of the PEM fuel cells and the cell performance is highly related to its structure. Catalyst layers are generally made by uniform distribution of catalyst on carbon cloth or carbon papers to form electrodes. In this paper, the idea of using non-uniform catalyst layer instead of common uniform catalyst layers is presented and simulated by a two-dimensional steady-state computational model. The model accounts for species transport, electrochemical kinetics, charge transport and current density distribution. A fuel cell test stand is designed and built to facilitate experimental validation of the model. Modeling results show that electrical... 

    SnO2@a-Si core-shell nanowires on free-standing CNT paper as a thin and flexible Li-ion battery anode with high areal capacity

    , Article Nanotechnology ; Volume 28, Issue 25 , 2017 ; 09574484 (ISSN) Abnavi, A ; Sadati Faramarzi, M ; Abdollahi, A ; Ramzani, R ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Here, we report 3D hierarchical SnO2 nanowire (NW) core-amorphous silicon shell on free-standing carbon nanotube paper (SnO2@a-Si/CNT paper) as an effective anode for flexible lithium-ion battery (LIB) application. This binder-free electrode exhibits a high initial discharge capacity of 3020 mAh g-1 with a large reversible charge capacity of 1250 mAh g-1 at a current density of 250 mA g-1. Compared to other SnO2 NW or its core-shell nanostructured anodes, the fabricated SnO2@a-Si/CNT structure demonstrates an outstanding performance with high mass loading (∼5.9 mg cm-2), high areal capacity (∼5.2 mAh cm-2), and large volumetric capacity (∼1750 mAh cm-3) after 25 cycles. Due to the...