Loading...
Search for: carbonated-water
0.009 seconds

    New insight on dynamic behavior of swelling and bond number of light and heavy crude oil during carbonated water flooding

    , Article European Physical Journal Plus ; Volume 135, Issue 1 , January , 2020 Lashkarbolooki, M ; Zeinolabedini Hezave, A ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Improving oil recovery and decreasing greenhouse gas emissions are two important attractive features of CO2-enriched water injection into oil reservoirs. Regarding these unique features, the main objective of this study was concentrated to evaluate the swelling behavior of crude oil as a fundamental mechanism of carbonated water (CW) flooding. To achieve these goals, the swelling and Bond number of light and heavy crude oils (namely LCO and HCO, respectively) are measured and compared to each other. The results obtained from the measured swelling factors of crude oil/CW show some complicated behaviors. That is, as temperature increases the swelling factor decreases at low pressure... 

    The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock

    , Article Chinese Journal of Chemical Engineering ; 2018 ; 10049541 (ISSN) Shakiba, M ; Riazi, M ; Ayatollahi, S ; Takband, M ; Sharif University of Technology
    Chemical Industry Press  2018
    Abstract
    Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery... 

    Effect of CO2 and crude oil type on the dynamic interfacial tension of crude oil/carbonated water at different operational conditions

    , Article Journal of Petroleum Science and Engineering ; Volume 170 , 2018 , Pages 576-581 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Concerns about climate change have persuaded the researchers to examine CO2 injection in the form of carbonated water (CW) into oil reservoir as a safe and effective CO2 storage and enhanced oil recovery process. Although interfacial tension (IFT) between crude oil and injected fluid has a vital role on the displacement of fluids in porous media, the effect of CO2 and crude oil type on the dynamic IFT of crude oil under different operational conditions is not well understood. Accordingly, this study was carried out to assess the effects of temperature, pressure, crude oil type and CO2 on the dynamic IFT of crude oil/CW. To achieve this goal, two types of crude oil were provided from southern... 

    Experimental investigation of dynamic swelling and Bond number of crude oil during carbonated water flooding; Effect of temperature and pressure

    , Article Fuel ; Volume 214 , 2018 , Pages 135-143 ; 00162361 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The potential of crude oil swelling is dominant mechanism in the development and implementation of carbonated water (CO2 saturated water) flooding as an environmental friendly enhanced oil recovery method. In this study, the volume of crude oil drop in carbonated water (CW) was measured at temperatures of 30, 50 and 80 °C and pressures of 500, 1000, 2000 and 4000 psi to investigate the swelling behavior of crude oil during CW flooding. In addition, the variations of dynamic and equilibrium Bond number of CW/crude oil due to dissolution of CO2 in the crude oil are compared to the crude oil/water systems. It is expected that crude oil swelling decreases as temperature increases due to a... 

    The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock

    , Article Chinese Journal of Chemical Engineering ; Volume 27, Issue 7 , 2019 , Pages 1699-1707 ; 10049541 (ISSN) Shakiba, M ; Riazi, M ; Ayatollahi, S ; Takband, M ; Sharif University of Technology
    Chemical Industry Press  2019
    Abstract
    Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery... 

    A laboratory approach to enhance oil recovery factor in a low permeable reservoir by active carbonated water injection

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3149-3155 ; 23524847 (ISSN) Chen, X ; Paprouschi, A ; Elveny, M ; Podoprigora, D ; Korobov, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, different injectivity scenarios were experimentally investigated in a coreflooding system to observe the efficiency of each method in laboratory conditions. Surfactant flooding, CO2 injection, carbonated water injection (CWI), active carbonated water injection (ACWI), after water flooding were investigated through the coreflooding system. First, it is necessary to optimize the surfactant concentration and then use it in ACWI injection. To do this, linear alkylbenzene sulfonic acid (LABSA) was used as a cationic surfactant at different concentrations. It was observed that 0.6 PV concentration of LABSA had an optimum result as increasing the surfactant concentration would not be... 

    Experimental Investigation of Carbonated Water Alternating Nitrogen Gas Injection to Enhance Heavy Oil Recovery From Carbonated Rock Reservoir

    , M.Sc. Thesis Sharif University of Technology Majidi, Mohammad Javad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Taghikhani, Vahid (Co-Advisor) ; Badakhshan, Amir (Co-Advisor)
    Abstract
    By continuous decreasing the fossil fuel energy resources and increasing demand of such energies on the other hand with decreasing exploration of the new ones, production from these limited resources are in grate consideration. As a few percentages of the oil recovers by primary oil production and also remaining a lot of oil after water and gas injection in the secondary oil recovery process, causes that new methods to increase the oil recovery has been proposed. Water injection is a simple and common method in enhanced oil recovery process. Also water alternating gas injection and simultaneous water and gas injection causes considerable increase in oil recovery. Recently utilization of... 

    Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 137 , 2016 , Pages 134-143 ; 09204105 (ISSN) Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Gas injection process for more oil recovery and in particular CO2 injection is well-established method to increment oil recovery from underground oil reservoirs. CO2 sequestration which takes place during this enhanced oil recovery (EOR) method has positive impact on reducing the greenhouse gas emission which causes global warming. Direct gas injection into depleted oil reservoirs, encounters several shortcomings such as low volumetric sweep efficiency, early breakthrough (BT) and high risk of gas leakage in naturally fractured carbonate oil reservoirs. Carbonated water injection (CWI) has been recently proposed as an alternative method to alleviate the problems associated with gas... 

    Effect of CO2 and natural surfactant of crude oil on the dynamic interfacial tensions during carbonated water flooding: experimental and modeling investigation

    , Article Journal of Petroleum Science and Engineering ; Volume 159 , 2017 , Pages 58-67 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Carbonated water has been recently proposed as an enhanced oil recovery method for crude oil reservoirs. Interfacial tension (IFT) plays a crucial rule on the displacement of trapped oil ganglia in the porous media. This investigation is designed to systematically assess the dynamic interfacial tension (DIFT) of two different types of crude oils with carbonated water (CW). In addition, the measured experimental data were applied into specified models. The DIFT behavior of acidic and non-acidic crude oil samples/CW and deionized water (DW) are also compared to find the effect of dissolved carbon dioxide in water on IFT. At the next stage, DIFT of all the results were used through three... 

    Activating solution gas drive as an extra oil production mechanism after carbonated water injection

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 11 , 2020 , Pages 2938-2945 Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Materials China  2020
    Abstract
    Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil...