Loading...
Search for: casimir-force
0.007 seconds
Total 22 records

    Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 1, Issue 3 , 2007 , Pages 364-382 ; 1751570X (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2007
    Abstract
    In this paper, the effect of the Casimir force on pull-in parameters of cantilever type nanomechanical switches is investigated by using a distributed parameter model. In modeling of the electrostatic force, the fringing field effect is taken into account. The model is nonlinear due to the inherent nonlinearity of the Casimir and electrostatic forces. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The pull-in parameters of the switch are computed in three cases including nanoactuators... 

    Analytical modeling of the effects of electrostatic actuation and casimir force on the pull-in instability and static behavior of torsional nano/micro actuators

    , Article International Journal of Modern Physics B ; Volume 27, Issue 6 , 2013 ; 02179792 (ISSN) Moeenfard, H ; Darvishian, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    This paper studies the effect of Casimir force on the pull-in instability of electrostatically actuated torsional nano/micro actuators. Dependence of the actuator's pull-in angle and pull-in voltage on several design parameters are investigated and it is found that Casimir force can considerably reduce the stability limits of the torsional actuators. Nonlinear equilibrium equation is solved numerically and analytically using straight forward perturbation expansion method. It is observed that a fourth-order perturbation approximation can precisely model the behavior of a torsional actuator. The results of this paper can be used for safe and stable design of torsional nano/micro actuators  

    Variation of the lateral Casimir force between corrugated conductors due to the presence of a dielectric slab

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 86, Issue 2 , 2012 ; 10502947 (ISSN) Sarabadani, J ; Soltani, M ; Zakeri, P ; Jafari, S. A ; Sharif University of Technology
    APS  2012
    Abstract
    We investigate the lateral Casimir interaction between two corrugated conductors when they enclose a dielectric slab. The magnitude of the lateral Casimir force can be changed due to the presence of a dielectric slab between them, and it strongly depends on the thickness (d) and dielectric function of the slab and also on the position of the slab with respect to the conductors. In addition, the distance between the conductors (H) and their corrugation wavelengths play important roles in tuning the lateral Casimir interaction. For fixed d and H, quite interestingly, the magnitude of the lateral Casimir force varies when the position of the slab with respect to conductors changes, and it has a... 

    Modeling of Pull-In Instability of Nano/Micromirrors Under the Combined Effect of Capillary and Casimir Forces

    , Article International Journal of Optomechatronics ; Volume 5, Issue 4 , Dec , 2011 , Pages 378-392 ; 15599612 (ISSN) Moeenfard, H ; Darvishian, A ; Ahmaidan, M. T ; Sharif University of Technology
    2011
    Abstract
    In the current article the effect of the Casimir force on the static behavior and pull-in characteristics of nano/micromirrors under capillary force is investigated. At the first, the dimensionless equation governing the static behavior of nano/micromirrors is obtained. The dependency of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that the Casimir effect can considerably reduce the pull-in instability limits of the nano/micromirror. It is also found that rotation angle of the mirror under capillary force highly depends on the Casimir force applied to the mirror. Finally the... 

    Casimir effect in domain wall formation

    , Article International Journal of Modern Physics A ; Volume 18, Issue 23 , 2003 , Pages 4285-4293 ; 0217751X (ISSN) Setare, M. R ; Sharif University of Technology
    2003
    Abstract
    The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe  

    Pull-in Analysis of Nano/Micromirrors under Effect of Capillary Force with Consideration Influences of Casimir and Van Der Waals Forces

    , M.Sc. Thesis Sharif University of Technology Darvishian, Ali (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    In this thesis, pull-in of nano/micromirrors under effects of capillary, Casimir and van der Waals (vdW) forces is investigated based on two models. In the first model, only rotation of torsional beams of mirror is considered. In the second model, effect of bending of the torsional beams is also considered. The static behavior of the mirror under capillary, Casimir and vdW loading are also studied using these models. Results show that neglecting bending effect, can lead to considerable overestimation in predicting the pull-in limits of the nano/micromirrors under these forces.Results reveal that the static behavior of the nano/micromirrors under these forces highly depends on the... 

    Repulsive Casimir Forces

    , M.Sc. Thesis Sharif University of Technology Davoodabadi, Khosro (Author) ; Bahmanabadi, Mahmoud (Supervisor) ; Taghizadeh Firouzjaee, Javad (Supervisor)
    Abstract
    It is well known that the fluctuations of electromagnetic fields in vacuum or in material media depend on the boundary conditions imposed on the fields. This dependence gives rise to forces which are known as Casimir forces, acting on the boundaries. Casimir forces between similar and disjoint objects such as two conducting or dielectric bodies are known in most cases to be attractive.¬¬ These forces are sometimes viewed as the macroscopic consequence of Van der Waals and Casimir-Polder attraction between molecules. In this thesis at first, calculation of Casimir forces in simple models were demonstrated. Then Van der Waals and Casimir-Polder forces have been explained in a unified theory... 

    The Quantum Vacuum in Quantum Theory, Quantum Field Theory and Contemporary Cosmology

    , M.Sc. Thesis Sharif University of Technology Zolfi, Hamed (Author) ; Golshani, Mehdi (Supervisor)
    Abstract
    In this thesis a brief review of the concept of vacuum has been studied. In addition, we shall see how we can determine the vacuum energy in a flat space-time. Also the renormalization and the regularization of zero point energy, which is 122 order of magnitude more than the critical density energy, has been represented. Then, we study supersymmetry which is a candidate to solve this problem. Furthermore, different ways to determine cosmological constant and the orbits of planets has been studied.Finally, by studying free fall experiments, the gravitational properties of vacuum has been represented.Caisimir effect, one of the most amazing predictions in the history of physics, and Lamb... 

    Dynamical Casimir Effect on the Electromagnetic Background Field, Photon Creation from Quantum Vacuum Fluctuations

    , M.Sc. Thesis Sharif University of Technology Mohammadzadeh, Hadi (Author) ; Bahmanabadi, Mahmud (Supervisor) ; Taghizadeh Firouzjaee, Javad (Supervisor)
    Abstract
    Boundary conditions on a background field can change structure of quantum vacuum such that cause the attraction force between two parallel ideal metal plates. This is known as the Casimir effect, and it has dynamic aspect that seen by changes in the position of the boundary conditions imposed at the time. In the static case, creation and annihilation of virtual particles leads to system pressure that can be negative (attraction) or positive (repulsive) with respect to parameters such as the shape and topology, the materials used in and temperature. In the dynamical case, particles are real and emits as radiation and pumps energy from vacuum. In this thesis, our first attempt isto recognize... 

    Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this paper, the influence of the Casimir force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter beam model. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of micromechanical... 

    Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 9 , 2010 , Pages 2037-2047 ; 09544062 (ISSN) Moghimi-Zand, M ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    In this study, influences of intermolecular forces on the dynamic pull-in instability of electrostatically actuated beams are investigated. The effects of midplane stretching, electrostatic actuation, fringing fields, and intermolecular forces are considered. The boundary conditions of the beams are clamped-free and clamped-clamped. A finite-element model is developed to discretize the governing equations, and Newmark time discretization is then employed to solve the discretized equations. The static pull-in instability is investigated to validate the model. Finally, dynamic pull-in instability of cantilevers and double-clamped beams are studied considering the Casimir and van der Waals... 

    Nonlinear Analysis of Pull-in, Contact Time and Dynamic Behavior of Microswitches Under Static and Dynamic Electric Force With Movable Base

    , M.Sc. Thesis Sharif University of Technology Karimzade, Ali (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Micro electromechanical systems (MEMS) such as sensors and actuators are gaining more popularity in recent years. These systems have different application in automation, medicine and other industries. Mechanical structures are governed by electrical systems in MEMS devices and this is one of the challenges of MEMS studies. Usually these systems made by one deformable beam or plate over a fixed substrate. Due to applied voltage between substrate and deformable plate or beam, the deformable plate deflects toward the fixed substrate. The voltage at which the system becomes unstableis called pull-in voltage. Pull-in voltage is the most important characteristics of MEMS beyond which pull-in takes... 

    Analytical solutions for the static instability of Micro/Nano mirrors under the combined effect of capillary force and Casimir force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, 11 November 2011 through 17 November 2011 ; Volume 11 , November , 2011 , Pages 463-469 ; 9780791854976 (ISBN) Moeenfard, H ; Darvishian, A ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    This paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and Casimir force. At the First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained. The dependency of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of casimir force can considerably reduce the stability limits of nano/micromirror. It is also found that rotation angle of the mirror due to capillary force highly depends on the casimir force applied to the... 

    Theoretical study of the effect of زasimir attraction on the pull-in behavior of beam-type NEMS using modified Adomian method

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 2 , 2010 , Pages 625-632 ; 13869477 (ISSN) Koochi, A ; Sadat Kazemi, A ; Tadi Beni, Y ; Yekrangi, A ; Abadyan, MR ; Sharif University of Technology
    2010
    Abstract
    In this paper, modified Adomian decomposition (MAD) is introduced to investigate the effect of the Casimir attraction on pull-in instability of beam-type NEMS theoretically. Two engineering cases including cantilever and double cantilever nano-beam are considered. The proposed MAD method is employed to solve the nonlinear constitutive equation of nano-beams. The basic engineering parameters such as critical deflection and pull-in voltage of nano-beams are computed. It is found that the Casimir forces decrease the pull-in deflection and voltage of nano-beams. On the other hand, the fringing field increases the pull-in deflection while decreases the pull-in voltage of the actuators. As a... 

    Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces

    , Article International Journal of Solids and Structures ; Volume 44, Issue 14-15 , 2007 , Pages 4925-4941 ; 00207683 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2007
    Abstract
    In this paper, a distributed parameter model is used to study the pull-in instability of cantilever type nanomechanical switches subjected to intermolecular and electrostatic forces. In modeling of the electrostatic force, the fringing field effect is taken into account. The model is nonlinear due to the inherent nonlinearity of the intermolecular and electrostatic forces. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. The pull-in parameters of the switch are computed under... 

    Nonlinear Analysis of an Electrostatically Actuated Microbeam Considering Coupled Vibrations Due to Rotation

    , Ph.D. Dissertation Sharif University of Technology Mojahedi, Mahdi (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    This research is concerned with the study of the static, dynamic, vibration and instability of an electrostatically actuated microbeam gyroscope considering geometric nonlinearities and electrostatic fringing fields. A vibrating microbeam gyroscope consists of a beam with a rigid (proof) mass attached to it and undergoes coupled flexural-flexural vibrations coupled with base rotation. The primary oscillation is generated in drive direction of the microbeam gyroscope by a pair of DC and AC voltages on the mass. The secondary oscillation occurring in the sense direction is induced by the Coriolis coupling caused by the input angular rate of the beam along its axis. In this case gyroscope acts... 

    Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , FEB , 2012 , Pages 537-543 ; 1738494X (ISSN) Moeenfard, H ; Darvishian, A ; Ahmaidan, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, static behavior of nano/microm1irrors under Casimir force is studied. At the first, the equilibrium equation governing the statical behavior of nano/micromirrors is obtained. Then energy method is employed to investigate statical stability of nano/micromirrors equilibrium points and a useful equation is suggested for successful and stable design of nano/micromirrors under Casimir force. Then, equilibrium angle of nano/micromirrors is calculated both numerically and analytically using the homotopy perturbation method (HPM). It is observed that with increasing the instability number defined in the paper, the rotation angle of the mirror is increased and suddenly, pull-in occurs.... 

    Closed form solutions for the problem of statical behavior of nano/micromirrors under the effect of capillary force and van der Waals force

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011, Denver, CO ; Volume 11 , 2011 , Pages 213-219 ; 9780791854976 (ISBN) Darvishian, A ; Moeenfard, H ; Zohoor, H ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    2011
    Abstract
    The current paper deals with the problem of static instability of Micro/Nano mirrors under the combined effect of capillary force and van der Waals force. First the governing equations of the statical behavior of Micro/Nano mirrors under the combined effect of capillary force and casimir force is obtained using the newtons first law of motion. The dependence of the critical tilting angle on the physical and geometrical parameters of the nano/micromirror and its supporting torsional beams is investigated. It is found that existence of vdW torque can considerably reduce the stability limits of the nano/micromirror. It is also found that rotation angle of the mirror due to capillary force... 

    Combined action of Casimir and electrostatic forces on nanocantilever arrays

    , Article Acta Mechanica ; Volume 212, Issue 3-4 , July , 2010 , Pages 305-317 ; 00015970 (ISSN) Ramezani, A ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    Cantilever arrays with nearest-neighbor interactions are considered to obtain the pull-in parameters. The interactions between the neighboring beams are a combination of the Casimir force and the electrostatic force with the first-order fringing field correction. A set of coupled nonlinear boundary value problems and a set of coupled nonlinear equations arise in the distributed and lumped parameter modeling of the array, respectively. The models are simulated numerically to obtain the pull-in parameters of the arrays with different number of beams. The pull-in parameters of large arrays converge to constant values, which are independent of the number of beams in the array. The constants... 

    Analytical solutions for the static instability of nano-switches under the effect of casimir force and electrostatic actuation

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 63-69 ; 9780791843857 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper deals with the problem of static instability of nano switches under the effect of Casimir force and electrostatic actuation. The nonlinear fringing field effect has been accounted for in the model. Using a Galerkin decomposition method and considering only one mode, the nonlinear boundary value problem describing the static behavior of nano-switch, is reduced to a nonlinear boundary value ordinary differential equation which is solved using the homotopy perturbation method (HPM). In order to ensure the precision of the results, the number of included terms in the perturbation expansion has been investigated. Results have been compared with numerical results and also with...