Loading...
Search for: catalytic-applications
0.007 seconds

    Interaction of ionic liquids with the surface of silica gel using nanocluster approach: A combined density functional theory and experimental study

    , Article Journal of Physical Organic Chemistry ; Vol. 27, issue. 2 , 2014 , pp. 163-167 ; ISSN: 08943230 Vafaeezadeh, M ; Fattahi, A ; Sharif University of Technology
    Abstract
    Silica gel-confined ionic liquid (IL) is a class of heterogeneous catalysts with broad catalytic applications. Leaching of the IL from the surface of the support is the major drawback of these catalysts, which reduce the catalyst efficiency during the chemical reactions. To investigate the effect of the hydrogen bonding on the leaching phenomena, the interaction between the 1-ethyl-3-methylimidazolium-based IL with various anions (Cl-, Br-, HSO4 -, NO3 -, BF 4 -, and PF6 -) and the surface of the silica gel were studied using density functional theory. Hence, a hydroxylated cage-like cluster of silica gel, Si4O6(OH), was selected to mimic the surface. The values of ÎEinteraction show that... 

    Dual catalytic function of the task-specific ionic liquid: Green oxidation of cyclohexene to adipic acid using 30% H2O2

    , Article Chemical Engineering Journal ; Volume 221 , April , 2013 , Pages 254-257 ; 13858947 (ISSN) Vafaeezadeh, M ; Hashemi, M. M ; Sharif University of Technology
    2013
    Abstract
    The sole industrial process which currently used for adipic acid production is nitric acid oxidation of either cyclohexanol or cyclohexanol/cyclohexanone mixture. Emission of greenhouse nitrous oxide (N2O) gas from this process strongly contributes to global warming, resulting in acid rain and ozone depletion. Herein, we report a catalytic application of a novel dual task-specific ionic liquid (an ionic liquid with two catalytic functions) for oxidation of cyclohexene to adipic acid using 30% hydrogen peroxide. The catalyst showed desirable activity toward oxidation of cyclohexene and some cyclic olefins to produce their corresponding dicarboxylic acids  

    A strategy for single-step elaboration of V2O 5-grafted TiO2 nanostructured photocatalysts with evenly distributed pores

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 21 , 2011 , Pages 6236-6241 ; 09258388 (ISSN) Bayati, M. R ; Molaei, R ; Moshfegh, A. Z ; Golestani-Fard, F ; Sharif University of Technology
    2011
    Abstract
    V2O5-TiO2 nanostructured porous layers were grown through micro arc oxidation of titanium in vanadate containing electrolytes. This study sheds light on the effect of the electric current type on the photocatalytic performance of the layers. Surface morphology of the layers was investigated by SEM. The results revealed a porous structure with a pores size of 30-180 nm depending on the frequency and the duty cycle. A uniform porous structure was obtained under the pulse-DC regime. Topographical investigations revealed a rough surface which is favorable for catalytic applications. Our XRD and XPS results showed that the layers consisted of anatase, rutile, and vanadium oxide phases whose... 

    Production of granulated-copper oxide nanoparticles for catalytic application

    , Article Journal of Materials Research ; Volume 25, Issue 10 , 2010 , Pages 2025-2034 ; 08842914 (ISSN) Hosseinpour, M ; Ahmadi, S. J ; Mousavand, T ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Ultra fine CuO nanoparticles In the range of 2 ± 0.2 nm were synthesized by the supercritical hiydrotliermal method in a batch reactor. Itwas demonstrated that elevating the pH of the Cu2+ precursor solution to around 6 (neutral condition) not only does not lead to excessive agglomeration of the particles, but also reduces particle size and in general promotes their nanoscale characteristics. Prepared nanoparticles were immobilized in the biopolymcric matrix of barium alginate and calcined at different temperatures resulting in micro spherical granules of high porosity and elevated mechanical strength. The fabricated samples were characterized using x-ray diffractometry (XRD), transmission... 

    How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?

    , Article Applied Surface Science ; Volume 256, Issue 13 , 2010 , Pages 4253-4259 ; 01694332 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Pure titania porous layers consisted of anatase and rutile phases, chemically and structurally suitable for catalytic applications, were grown via micro-arc oxidation (MAO). The effect of applied voltage, process time, and electrolyte concentration on surface structure, chemical composition, and especially photocatalytic activity of the layers was investigated. SEM and AFM studies revealed that pore size and surface roughness of the layers increased with the applied voltage, and the electrolyte concentration. Moreover, the photocatalytic performance of the layers synthesized at medium applied voltages was significantly higher than that of the layers produced at other voltages. About 90% of... 

    Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 ; 09478396 (ISSN) Hatamie, S ; Ahadian, M. M ; Rashidi, A ; Karimi, A ; Akhavan, O ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed... 

    Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 6 , 2018 ; 09478396 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Abstract: Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s−1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s−1), and Au@g-C3N4 (0.012 s−1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in... 

    Silver nanocube crystals on titanium nitride buffer layer

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 10 , 2009 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Thermally stable cubic silver nanoparticles were grown by simply annealing a silver nano-thickness layer on a crystalline TiN buffer layer deposited on a Si(1 0 0) substrate. Formation of silver nanocubes was investigated by scanning electron microscopy, atomic force microscopy, x-ray diffractometry and UV-visible spectroscopy. The shapes of the silver nanoparticles were controlled by the thickness of the Ag layer. The silver nanocubes were self-ordered single crystals bounded mainly by {1 0 0} facets. It was found that a change in the shape of the nanoparticles from semi-spherical to cubic resulted in a substantial variation of their surface plasmon resonance absorption peak from 410 to 590... 

    Core–Shell nanophotocatalysts: review of materials and applications

    , Article ACS Applied Nano Materials ; Volume 5, Issue 1 , 2022 , Pages 55-86 ; 25740970 (ISSN) Shafiee, A ; Rabiee, N ; Ahmadi, S ; Baneshi, M ; Khatami, M ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Hybrid nanostructures and nanoarchitectures possess unique physicochemical properties such as high activity/functionality, enhanced physicochemical stability, and improved biocompatibility, which renders them suitable for various biomedical, pharmaceutical, environmental, and catalytic applications. In this context, core–shell nanophotocatalysts have shown superior activity compared to their counterparts, namely, their individual pristine semiconductors and composite materials components. Thus, the development of various innovative core–shell nanostructures as photocatalysts is of practical relevance in view of their unique properties with salient advantageous features applicable to, among...