Loading...
Search for: cathode-materials
0.005 seconds

    Synthesis of LiNi0.8Co0.2O2 Nano Particles Coated with LiCoO2 Using Sol-Gel Method

    , M.Sc. Thesis Sharif University of Technology Hamedi Jouybari, Yaser (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Nitrates of lithium, cobalt and nickel were used to synthesize LiNi0.8Co0.2O2 cathode material through sol-gel technique. Various synthesis parameters such as calcination time, temperature, chelating agent and the solvent were studied to determine the optimized condition for processing the cathode nono materials. TG/DTA tests were used to identify the optimized calcination temperature. Different techniques such as ICP, XRD and TEM were employed to characterize the chemical composition, crystal structure, size and morphology of the powders. Micron and nano-sized powders were produced using citric / oxalic and TEA as chelating agent, respectively. Results show that the best condition for... 

    Regeneration LiNi0.5Co0.2Mn0.3O2 Material from Spent Lithium-ion Batteries by Co-precipitation

    , M.Sc. Thesis Sharif University of Technology Karimi Rahjerdi, Sajad (Author) ; Askari, Masoud (Supervisor)
    Abstract
    In the present study, the process of recycling spent lithium batteries by co-precipitation method has been investigated. The process of regeneration of lithium batteries by co-deposition method consists of four stages. In the first stage, the cathodic material is separated from the aluminum foil using NMP solution, and then the cathodic material is heat treated at a temperature of 700 degrees. In the second stage, using sulfuric acid and hydrogen peroxide, the cathode material is leached at 60 ° C, pulp density 55 g / l, time 100 minutes, sulfuric acid concentration 3.25 M and volume percentage of hydrogen peroxide. 10% More than 99% of lithium, nickel, cobalt and manganese are leached. In... 

    Magnetic stirring assisted hydrothermal synthesis of Na3MnCO3PO4 cathode material for sodium-ion battery

    , Article Ceramics International ; Volume 47, Issue 19 , 2021 , Pages 26929-26934 ; 02728842 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S.K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Na3MnCO3PO4 (NMCP) is considered one of the promising cathode materials for sodium-ion batteries due to its high theoretical capacity. The hydrothermal method is an efficient, environmental-friendly, and simple route with low instrument cost to prepare active cathode materials such as NMCP. In this research, magnetic stirring was applied to promote the hydrothermal synthesis, and NMCP was produced by controlling different stirring times. This method results in the formation of pure NMCP upon only 45 min processing time. According to the ICP results, the Na to Mn ratio in the NMCP approached the stoichiometric value of 3 by prolonging the stirring time. By analyzing the charge-discharge... 

    Effects of lithium excess and Ni content on the electrochemical performance of Li1+x (Ni0.45-xMn0.4Co0.15) O2 lithium-ion cathode materials in stoichiometric state

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Tolouei, A ; Kaflou, A ; Sadrnezaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In Li-ion batteries, application of active materials can enhance the kinetics of the charge-discharge process, reduce the costs and improve the safety of the system. In this work, the effect of nickel content and lithium excess in Li1+x (Ni0.4-xMn0.5Co0.1) O2 compounds on the electrochemical performance of the lithium-ion battery cathode have been studies. For this purpose, three compounds of NMC in the stoichiometric state were synthesized via co-precipitation as the cathode active material. XRF and EDS analyses indicate that precursors and oxide compounds are well synthesized. The final compound of synthesized cathodes was obtained by ICP analysis. XRD results also suggest that the... 

    Elevated-temperature behaviour of LiNi0.5Co0.2Mn0.3O2 cathode modified with rGO-SiO2 composite coating

    , Article Journal of Alloys and Compounds ; Volume 843 , 2020 Razmjoo Khollari, M. A ; Khalili Azar, M ; Esmaeili, M ; Tanhaei, M ; Dolati, A ; Hosseini H, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An intense decrease in cycling performance and safety is a challenge for elevated temperature application of LiNi0.5Co0.2Mn0.3O2 (NCM) cathode material. In this paper, effect of two types of nano-coatings on improvement of elevated temperature performance of NCM cathode material has been investigated. One of the coatings contains SiO2 nanoparticles and the other one contains composite of reduced graphene oxide and SiO2 nanoparticles (rGO-SiO2). The coatings were fabricated by a facile wet chemical method. The SiO2 coated cathode material showed an excellent elevated temperature cycling stability, however, a decrease in discharge capacity and rate capability of this sample was observed. On... 

    Enhanced electrochemical performance and thermal stability of ZrO2- And rGO-ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2Cathode material for Li-Ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 1 , 2021 , Pages 934-945 ; 25740962 (ISSN) Khalili Azar, M ; Razmjoo Khollari, M. A ; Esmaeili, M ; Heidari, E ; Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    LiNi0.8Co0.1Mn0.1O2 (NCM811) has been considered as a promising cathode for Li-ion batteries (LIBs) due to its high electrochemical capacity and low cost; however, poor cycling stability is one of the main restricting factors in industrial applications of the NCM811 cathode material. Notably, the capacity fading and low structural stability of NCM811 are intensified at elevated temperatures. ZrO2- and composite rGO-ZrO2-coated NCM811 were fabricated by a facile wet chemical method and evaluated at 25 and 55 °C to overcome these impediments. The ZrO2 coating provides superior cycling and thermal stability and perfectly protects the cathode active material from deleterious side reactions, and... 

    Bimetallic oxide nanosheets from nickel-vanadium layered double hydroxide as an efficient cathode for rechargeable nickel-zinc batteries

    , Article Energy and Fuels ; Volume 35, Issue 22 , 2021 , Pages 18805-18814 ; 08870624 (ISSN) Rastgoo Deylami, M ; Esfandiar, A ; Iraji Zad, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nickel-zinc batteries as safe and economic energy storage devices suffer from lack of high electrochemical performance of cathode materials. Herein, a new cathode material for rechargeable Ni/Zn batteries is introduced based on various compositions of mixed metal oxide (MMO) through a calcination process of nickel-vanadium layered double hydroxide at different temperatures. The results demonstrated that the prepared sample at 500 °C presents the best electrochemical properties such as a good electrochemical discharge capacity (278.4 mAh g-1 at 0.5 A g-1), good cycle life (capacity retention of 74% after 1000 cycles at 5 A g-1), and excellent rate capability (177 mAh g-1 at 5 A g-1). These... 

    Electrochemical performance and elevated temperature properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety li-ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 5 , 2021 , Pages 5304-5315 ; 25740962 (ISSN) Razmjoo Khollari, M. A ; Azar, M. K ; Esmaeili, M ; Malekpour, N ; Hosseini Hosseinabad, S. M ; Moakhar, R. S ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has attracted great research interest due to its high energy density and less usage of costly raw materials. However, the high nickel content of NCM811 brings about an extremely unstable interface between the electrode and electrolyte and therefore inferior cyclic stability. Herein, we have proposed a straightforward method to deliver 1, 2, and 4 wt % of TiO2 nanoparticles (NPs) on the surface of the NCM811 cathode material and to improve its properties at room and high temperatures. Based on scanning electron microscopy and transmission electron microscopy observations, the coating thickness varies from 10 to 35 nm and the 2 wt %... 

    Synthesis and electrochemical properties of LiNi0.8Co 0.2O2 nanopowders for lithium ion battery applications

    , Article Journal of Power Sources ; Volume 196, Issue 1 , 2011 , Pages 337-342 ; 03787753 (ISSN) Jouybari, Y.H ; Asgari, S ; Sharif University of Technology
    Abstract
    Nitrates of lithium, cobalt and nickel are utilized to synthesize LiNi 0.8Co0.2O2 cathode material through sol-gel technique. Various synthesis parameters such as calcination time and temperature as well as chelating agent are studied to determine the optimized condition for material processing. Using TG/DTA techniques, the optimized calcination temperatures are selected. Different characterization techniques such as ICP, XRD and TEM are employed to characterize the chemical composition, crystal structure, size and morphology of the powders. Micron and nano-sized powders are produced using citric/oxalic and TEA as chelating agent, respectively. Selected powders are used as cathode material... 

    Characterization of LiCoO2 nanopowders produced by sol-gel processing

    , Article Journal of Nanomaterials ; Volume 2010 , 2010 ; 16874110 (ISSN) Asgari, S ; Soltanmohammad, S ; Sharif University of Technology
    2010
    Abstract
    LiCoO2 nanopowders, one of the most important cathode materials for lithium-ion batteries, were synthesized via a modified sol-gel process assisted with triethanolamine (TEA) as a complexing agent. The influence of three different chelating agents including acrylic acid, citric acid, and oxalic acid on the size and morphology of particles was investigated. Structure and morphology of the synthesized powders were characterized by thermogravimetric/ differential thermal analyses (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results indicate that the powder processed with TEA and calcinated at 800 °C had an excellent hexagonal ordering of α-NaFeO2 -type (space...