Loading...
Search for: cell-death
0.006 seconds
Total 21 records

    Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide

    , Article Nanoscale ; Volume 7, Issue 19 , Apr , 2015 , Pages 8978-8994 ; 20403364 (ISSN) Hajipour, M. J ; Raheb, J ; Akhavan, O ; Arjmand, S ; Mashinchian, O ; Rahman, M ; Abdolahad, M ; Serpooshan, V ; Laurent, S ; Mahmoudi, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different... 

    Parallel nonlinear analysis of weighted brain's gray and white matter images for Alzheimer's dementia diagnosis

    , Article Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference ; 2010 , Pages 5573-5576 ; 1557170X (ISSN) Razavian, S. M ; Torabi, M ; Kim, K ; Sharif University of Technology
    2010
    Abstract
    In this study, we are proposing a novel nonlinear classification approach to discriminate between Alzheimer's Disease (AD) and a control group using T1-weighted and T2-weighted Magnetic Resonance Images (MRI's) of brain. Since T1-weighted images and T2-weighted images have inherent physical differences, obviously each of them has its own particular medical data and hence, we extracted some specific features from each. Then the variations of the relevant eigenvalues of the extracted features were tracked to pick up the most informative ones. The final features were assigned to two parallel systems to be nonlinearly categorized. Considering the fact that AD defects the white and gray regions... 

    Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    , Article Applied Surface Science ; Volume 320 , 30 November , 2014 , Pages 596-601 ; ISSN: 01694332 Mbeh, D. A ; Akhavan, O ; Javanbakht, T ; Mahmoudi, M ; Yahia, L ; Sharif University of Technology
    Abstract
    Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell... 

    Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells

    , Article Materials Science and Engineering C ; Volume 55 , 2015 , Pages 482-489 ; 09284931 (ISSN) Hatamie, S ; Akhavan, O ; Sadrnezhaad, S. K ; Ahadian, M. M ; Shirolkar, M. M ; Wang, H. Q ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Curcumin (as a natural reductant material) was utilized for green reduction and functionalization of chemically exfoliated graphene oxide (GO) sheets. The π-π attachment of the curcumin molecules onto the curcumin-reduced graphene oxide (rGO) sheets was confirmed by Raman and Fourier transform infrared spectroscopies. Zeta potential of the GO sheets decreased from about - 40 mV to - 20 mV, after the green reduction and functionalization. The probable cytotoxicity of the curcumin-rGO sheets was studied through their interactions with two human breast cancer cell lines (MDA-MB-231 and SKBR3 cell lines) and a normal cell line (mouse fibroblast L929 cell line). The curcumin-rGO sheet with... 

    Novel method for cancer cell apoptosis by localized UV light with gold nanostructures: A theoretical investigation

    , Article Nano ; Volume 5, Issue 6 , 2010 , Pages 325-332 ; 17932920 (ISSN) Sasanpour, P ; Rashidian, B ; Rashidian, B ; Vossoughi, M ; Sharif University of Technology
    2010
    Abstract
    A novel approach for phototherapy is proposed. The proposed method is based on cell apoptosis according to halting activation of cancer cell membrane receptor by exposure to UV light pulses without any side effect. In the proposed method, gold nanoparticles are directed to cancerous cells by conjugating their surface with specific ligands. UV light is created locally adjacent to cells around the gold nanoparticles. UV light is generated due to nonlinear interaction of visible light with gold nanoparticles because of enhancement in third order nonlinear effects. For example, by using 780 nm laser, 260 nm UV will be generated around the nanoparticle because of third harmonic generation... 

    Optimal robust control of drug delivery in cancer chemotherapy: A comparison between three control approaches

    , Article Computer Methods and Programs in Biomedicine ; Volume 112, Issue 1 , 2013 , Pages 69-83 ; 01692607 (ISSN) Moradi, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    2013
    Abstract
    During the drug delivery process in chemotherapy, both of the cancer cells and normal healthy cells may be killed. In this paper, three mathematical cell-kill models including log-kill hypothesis, Norton-Simon hypothesis and Emax hypothesis are considered. Three control approaches including optimal linear regulation, nonlinear optimal control based on variation of extremals and H∞-robust control based on μ-synthesis are developed. An appropriate cost function is defined such that the amount of required drug is minimized while the tumor volume is reduced. For the first time, performance of the system is investigated and compared for three control strategies; applied on three nonlinear models... 

    Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression

    , Article Computer Methods and Programs in Biomedicine ; Volume 136 , 2016 , Pages 107-117 ; 01692607 (ISSN) Malekian, N ; Habibi, J ; Zangooei, M. H ; Aghakhani, H ; Sharif University of Technology
    Elsevier Ireland Ltd 
    Abstract
    Background and objective There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. Methods We make an... 

    Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts

    , Article Advanced Engineering Materials ; Volume 11, Issue 12 , 2009 , Pages B243-B250 ; 14381656 (ISSN) Mahmoudi, M ; Simchi, A ; Vali, H ; Imani, M ; Shokrgozar, M. A ; Azadmanesh, K ; Azari, F ; Sharif University of Technology
    Abstract
    Super-paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic-resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell-cycle effects. The interactions of surfacesaturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co-precipitation method. The bare and coated magnetic nanoparticles with... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    Three-dimensional modeling of avascular tumor growth in both static and dynamic culture platforms

    , Article Micromachines ; Volume 10, Issue 9 , 2019 ; 2072666X (ISSN) Taghibakhshi, A ; Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Microfluidic cell culture platforms are ideal candidates for modeling the native tumor microenvironment because they can precisely reconstruct in vivo cellular behavior. Moreover, mathematical modeling of tumor growth can pave the way toward description and prediction of growth pattern as well as improving cancer treatment. In this study, a modified mathematical model based on concentration distribution is applied to tumor growth in both conventional static culture and dynamic microfluidic cell culture systems. Apoptosis and necrosis mechanisms are considered as the main inhibitory factors in the model, while tumor growth rate and nutrient consumption rate are modified in both quiescent and... 

    The effects of thymus plant extracts on single breast cancer cell morphology in the microfluidic channel

    , Article 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018, 3 December 2018 through 6 December 2018 ; 2019 , Pages 647-651 ; 9781538624715 (ISBN) Ahmad, M. R ; Mansor, M. A ; Alsadat Rad, M ; Soo-Beng Khoo, A ; Ahmad, M ; Marzuki, M ; Physiological Measurement; Sarawak Convention Bureau ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Microfluidics based systems could be useful for drug discovery as they allow for miniaturization and could potentially be run as multiple parallel cell based assays. Such miniaturization allows assays at single cell level and reduces the amount of test material needed, which, in the case of natural product extracts, simplifies the preparation. Thyme species extracts have been reported to show some promising anti-cancer effects. In the present work, we used a microfluidics based system to study the effects of Thymus kotschyanusm Boiss plant extract on two human breast cancer cells lines which are MDA-MB-231 and MCF-7. For better understanding a single cancer cell death mechanism and a flow... 

    Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation

    , Article Advanced Powder Technology ; Volume 31, Issue 9 , 2020 , Pages 4064-4071 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Ahmadi, S ; Chiani, M ; Nourouzian, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, a folic acid-functionalized niosome was formulated and loaded with letrozole and curcumin as a promising drug carrier system for chemotherapy of the breast cancer cells. The formulation process was optimized by varying the type of Span 80 and total lipid to drug ratio, where Span 80 and lipid to drug molar ratio of 10 resulted in the niosomes with maximum encapsulation of both drugs but minimum size. The developed niosomal formulation showed a great storage stability up to one month with the small changes in drug encapsulation efficiency and size during the storage. In addition, they showed a pH-dependent release behaviour with slow drug release at physiological pH (7.4) while... 

    Effect of synthesis temperature of magnetic–fluorescent nanoparticles on properties and cellular imaging

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 30, Issue 11 , 2020 , Pages 4597-4605 Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer  2020
    Abstract
    The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles... 

    Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer

    , Article Advanced Powder Technology ; Volume 32, Issue 12 , 2021 , Pages 4711-4722 ; 09218831 (ISSN) Rezaie Amale, F ; Ferdowsian, S ; Hajrasouliha, S ; Kazempoor, R ; Mirzaie, A ; Sedigh Dakkali, M ; Akbarzadeh, I ; Mohammadmahdi Meybodi, S ; Mirghafouri, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the current study, gold nanoparticles (AuNPs) were prepared using the green synthesis method using Artemisia annua extract, loaded into niosomes, and investigated their cytotoxicity and apoptotic effects. To optimize the niosomal formulation containing AuNPs, the effects of surfactants: cholesterol molar ratio, Span 60: Tween 60 M ratio, and AuNP concentration (µg/mL) were investigated. After examining the drug release profile, mathematical models were assessed to predict release kinetic. The cytotoxicity of noisome encapsulated AuNPs and free AuNPs was evaluated against human ovarian cancer cell line (A2780) by MTT assay. The apoptotic/necrosis ratio was studied using flow cytometry as... 

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications

    , Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) Behzadi, S ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study

    , Article Journal of Magnetism and Magnetic Materials ; Volume 462 , 2018 , Pages 185-194 ; 03048853 (ISSN) Hatamie, S ; Parseh, B ; Ahadian, M. M ; Naghdabadi, F ; Saber, R ; Soleimani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Hyperthermia generally means as increasing the temperature of particular region of body to rise 5 °C above the body's physiological temperature. Here, we investigate the thermal therapy of PEGylated cobalt ferrite nanoparticles prepared by hydrothermal approach on cancerous cell line in the alternative current magnetic field. To characterize of the magnetic nanoparticles (MNPs), scanning electron microscopy, dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometer were used. X-ray diffraction analysis confirmed the spinel phase formation of the MNPs. Cytotoxicity of MNPs using MTT assay on L929 cell lines showed the PEGylated... 

    Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 22 , 2009 , Pages 9573-9580 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) are being increasingly used in various biomedical applications such as hyperthermia, cell and protein separation, enhancing resolution of magnetic resonance imaging, and drug delivery. However, the toxicity data for SPION are limited. In this study, uncoated and single polyvinyl alcohol coated SPION with high chemical reactivity (due to the bigger surface area) were synthesized using a coprecipitation method. Cytotoxicity of these magnetic nanoparticles and their ability to cause arrest in cell life-cycles was investigated. Interaction of these nanoparticles with adhesive mouse fibroblast cell line (L929) was probed using MTT assay. High... 

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 2010 , Pages 300-309 ; 09277765 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Shokrgozar, M. A ; Milani, A. S ; Häfeli, U. O ; Stroeve, P ; Sharif University of Technology
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol)

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 6 , 2009 , Pages 2322-2331 ; 19327447 (ISSN) Mahmoudi, M ; Shokrgozar, M. A ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Vali, H ; Häfeli, U. O ; Bonakdar, S ; Sharif University of Technology
    2009
    Abstract
    This study investigated the behavior of ferrofluids containing superparamagnetic iron oxide nanoparticles (SPION) of various compositions for potential applications in drug delivery and imaging. To ensure biocompatibility, the interaction of these SPION with two cell lines (adhesive and suspended) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. The cell lines studied were primary mouse connective tissue cells (adhesive) and human leukemia cells (suspended). SPION were synthesized with a co-precipitation method under different stirring rates and NaOH molarities. The SPION demonstrated a range of magnetic saturations due to their... 

    Synthesis of nanostructured Ag@SiO2-Penicillin from high purity Ag NPs prepared by electromagnetic levitation melting process

    , Article Materials Science and Engineering C ; Volume 102 , 2019 , Pages 616-622 ; 09284931 (ISSN) Malekzadeh, M ; Yeung, K. L ; Halali, M ; Chang, Q ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nanostructured Ag@SiO2-Penicillin was synthesized from high-purity Ag0 NPs with a mean particle size of about 10 nm produced by electromagnetic levitation gas condensation (ELGC) method. The silver and penicillin contents of the synthesized nano-antibiotic were about 34 wt% and 2.5 wt% respectively, as determined by ICP-OES and TGA analyses. The antibacterial properties and synergistic effects of nanostructured Ag@SiO2 and Ag@SiO2–Penicillin on killing the Methicillin-susceptible S. aureus (MSSA) and Methicillin-resistant S. aureus (MRSA) bacteria were also examined. The nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ag@SiO2-Penicillin...