Loading...
Search for: cell-efficiency
0.007 seconds
Total 21 records

    3D asymmetric carbozole hole transporting materials for perovskite solar cells

    , Article Solar Energy ; Volume 189 , 2019 , Pages 404-411 ; 0038092X (ISSN) Sheibani, E ; Heydari, M ; Ahangar, H ; Mohammadi, H ; Taherian Fard, H ; Taghavinia, N ; Samadpour, M ; Tajabadi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Carbazole compounds are p-type hole-transporting materials (HTMs) useful for perovskite solar cells (PSCs). In this work, we developed a new class of carbazol based HTMs; non-fused 3-D asymmetric structures (S14 and S12) as HTM of PSCs. To the best of our knowledge, there is no report on non-fused HTMs with a high glass transition temperature (Tg = 165 °C), which reduces crystallization and suppresses grain boundaries in glassy film, resulting in long-term durability. Experimental results show that tuning the carbazole moiety in S14 structure has a constructive influence on geometrical alignment, hole mobility, hydrophobicity, stability as well as efficiency. The resultant power conversion... 

    Efficient and safe path planning for a mobile robot using genetic algorithm

    , Article 2009 IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, 18 May 2009 through 21 May 2009 ; 2009 , Pages 2091-2097 ; 9781424429592 (ISBN) Naderan Tahan, M ; Manzuri Shalmani, T ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new method for path planning is proposed using a genetic algorithm (GA). Our method has two key advantages over existing GA methods. The first is a novel environment representation which allows a more efficient method for obstacles dilation in comparison to current cell based approaches that have a tradeoff between speed and accuracy. The second is the strategy we use to generate the initial population in order to speed up the convergence rate which is completely novel. Simulation results show that our method can find a near optimal path faster than computational geometry approaches and with more accuracy in smaller number of generations than GA methods. © 2009 IEEE  

    Design and modeling of an integrated CHP system with solar hydrogen/methane fueled pem fuel cell for residential applications

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6B , November , 2014 ; ISBN: 9780791849521 Amirian, H ; Sayedin, F ; Maroufmashat, A ; Sharif University of Technology
    Abstract
    This paper describes the designing and evaluation of an alternative energy system which consists of PEMFC, PV, PEM electrolyser, methane reformer and hydrogen tank. In order to find out the minimum capacity of the components, a system sizing model is developed in MATLAB based on meteorological and electrical demand data. Three scenarios are considered based on different combinations of solar energy and fossil fuel energy as energy resources. The heating energy produced by the fuel cell is recovered for supplying domestic hot water while the system would supply electrical energy. Results show that system sizing strongly depends on scenarios and unit cost of electricity decreases through the... 

    Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer

    , Article Electrochimica Acta ; Volume 90 , 2013 , Pages 302-308 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Dadar, H ; Fray, D. J ; Sharif University of Technology
    2013
    Abstract
    We present a new TiO2 morphology, featuring highly crystalline anatase structure, synthesized by a two consecutive hydrothermal operation for the manufacture of dye-sensitized solar cells (DSSCs). This construct is a one-dimensional (1D) nanostructure (i.e., nanowire) with interconnected nanoparticles on the surface with a large percentage of reactive facets, so called corn-like nanowire. Such morphology is produced by a surface modification concept using surface tension stress mechanism. The double layer DSSC made of anatase-TiO2 nanoparticles as the under-layer and corn-like TiO 2 nanowires as the over-layer (as light scattering layer) shows higher conversion efficiency of 7.11% and short... 

    CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells

    , Article RSC Advances ; Volume 2, Issue 32 , 2012 , Pages 12278-12285 ; 20462069 (ISSN) Pazoki, M ; Taghavinia, N ; Abdi, Y ; Tajabadi, F ; Boschloo, G ; Hagfeldt, A ; Sharif University of Technology
    2012
    Abstract
    Chemical vapour deposition (CVD) at atmospheric pressure, using TiCl 4 as a precursor, was used to grow nanostructured TiO2 films on glass substrates. At relatively low temperatures (∼245 °C) and using relatively high reactant concentrations, different nano-morphologies of TiO2 were formed simultaneously, such as spheres, nanowires and mesoporous structures. The TiO2 spheres were successfully applied as light-scattering particles in dye-sensitized solar cells, either by direct deposition onto electrodes in the reactor, or by preparation of a printing paste from the deposited particles. For dye-sensitized solar cells using the organic dye D35 as sensitizer and a cobalt-complex based redox... 

    Optimization of operating parameters in a hybrid wind-hydrogen system using energy and exergy analysis: Modeling and case study

    , Article Energy Conversion and Management ; Volume 106 , December , 2015 , Pages 1318-1326 ; 01968904 (ISSN) Fakehi, A. H ; Ahmadi, S ; Mirghaed, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this study, hybrid renewable energy system based on wind/electrolyzer/PEM fuel cell are conceptually modeled, and also, exergy and energy analysis are performed. The energy and exergy flows are investigated by the proposed model for Khaf region-Iran with high average wind speed and monsoon. Exergy and energy analysis framework is made based on thermodynamic, electro-chemical and mechanical model of the different component of hybrid system. Also, the effects of various operating parameters in exergy efficiency are calculated. The results show an optimum wind speed where the exergy efficiency and power coefficient is at maximum level, and also, when the ambient temperature start to be... 

    A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: Embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode

    , Article Materials Research Bulletin ; Volume 72 , 2015 , Pages 64-69 ; 00255408 (ISSN) Shogh, S ; Mohammadpour, R ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Aggregated sub-micron size nitrogen doped TiO2 (N-TiO2) particles with superior optical and electrical features were successfully synthesized for embedding into commercial mesoporous TiO2 photoelectrode of dye sensitized solar cells (DSSCs) as the light scattering particles compared to undoped one. X-ray photoelectron spectroscopy and absorption spectra confirmed that the titanium dioxide is sufficiently doped by nitrogen in N-TiO2 sample. Employing these high-surface N-TiO2 in mesoporous photoelectrode of solar cells, the power conversion efficiency of 8% has been achieved which shows 17% improvement for the optimum embedded level of... 

    Nitrogen-doped submicron-size TiO2 particles as bifunctional light scatterers in dye-sensitized solar cells

    , Article Applied Physics A: Materials Science and Processing ; Volume 119, Issue 4 , 2015 , Pages 1283-1290 ; 09478396 (ISSN) Shogh, S ; Mohammadpour, R ; Iraji zad, A ; Taghavinia, N ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    The structural, electrical, optical, and photovoltaic properties of aggregated submicron nitrogen-doped TiO2 particles (NTiO2) and the influence of utilizing them, in comparison with undoped ones, as the light-scattering layer of dye-sensitized solar cells were investigated. Field emission scanning electron microscope, X-ray diffraction, and diffuse reflectance spectra showed that both type samples have similar morphology, crystal phase, and scattering feature. Moreover, photoluminescence, Mott–Schottkey, and photovoltaic characteristics such as IMPS/IMVS and charge extraction analysis indicated that the NTiO2 layer is an efficient scatterer in two aspects: enhancement of light-harvesting... 

    Comparative study on effect of titania morphology for light harvesting and scattering of DSSCs: Mesoporous nanoparticles, microspheres, and dandelion-like particles

    , Article Environmental Progress and Sustainable Energy ; Volume 35, Issue 6 , 2016 , Pages 1818-1826 ; 19447442 (ISSN) Mozaffari, N ; Mohammadi, M. R ; Andaji Garmaroudi, Z ; Musvi Gharavi, P. S ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    The light scattering and harvesting effects in dye-sensitized solar cells (DSSCs) is studied by controlling morphology, phase composition, and thickness of monolayer and double-layer TiO2 photoanode electrodes. The starting materials for preparation of TiO2 cells, including 25 nm mesoporous anatase nanoparticles, 200 nm anatase microspheres, 10 µm dandelion-like rutile particles and 40 nm nanoparticles containing 80% anatase-20% rutile, are synthesized by evaporation-induced self-assembly, sol-gel, and hydrothermal processes. It was found that the mesoporous anatase nanoparticles may improve light harvesting and dye-sensitization due to their high surface area and small particle size,... 

    Plasmonic effects of infiltrated silver nanoparticles inside TiO2 film: Enhanced photovoltaic performance in DSSCs

    , Article Journal of the American Ceramic Society ; Volume 99, Issue 1 , 2016 , Pages 167-173 ; 00027820 (ISSN) Andaji Garmaroudi, Z ; Mohammadi, M. R ; Sharif University of Technology
    Blackwell Publishing Inc 
    Abstract
    The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye-sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3-mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with... 

    Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident

    , Article Solar Energy ; Volume 132 , 2016 , Pages 1-14 ; 0038092X (ISSN) Asgari Moghaddam, H ; Mohammadi, M. R ; Seyed Reyhani, S. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Different structures of dye-sensitized solar cells (DSCs) were fabricated with various compositions and arrangement modes of the photoanodes. The solvothermally grown TiO2 nanoparticles and sol-gel derived spherical TiO2 and BaTiO3 particles were employed as the active and scattering layers of DSCs. TiO2 nanoparticles and spherical particles had pure anatase structure with particle size of 15-30 nm and 200-400 nm, respectively, whereas 300-800 nm BaTiO3 particles showed cubic perovskite structure. The efficiency improvement of mono-layer cells made of TiO2 nanoparticles (i.e., 7.22%) was achieved by light harvesting mechanism. Further enhancement of photovoltaic performance was achieved by... 

    Broadband and low-loss plasmonic Light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core-shell plasmonic particles

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 25 , 2016 , Pages 16359-16367 ; 19448244 (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Dabirian, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion... 

    Efficient dye-sensitized solar cells based on TiO2 nanoparticles and skein-like nanotubes: effect of arrangement modes of the layers and TiCl4 treatment

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 61 , 2016 , Pages 138-146 ; 18761070 (ISSN) Mojaddami, M ; Andaji Garmaroudi, Z ; Mohammadi, M. R ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    Herein, we report a double-layer photoanode electrode composed of TiO2 nanoparticles active layer and a mixture of nanoparticles and newly proposed skein-like nanotubes (NTs) top layer. Such structure performs well in solar light harvesting due to first, the top layer exhibits superior light scattering and second, the active layer with high dye-loading can make better use of the back-scattered light. The results reveal that 30-40 nm nanoparticles have anatase structure, whereas 5-7 μm skein-like NTs show a mixture of anatase and rutile phases. Photovoltaic measurements demonstrate that by tuning mass ratio between nanoparticles and skein-like NTs, the cells based on single-layer photoanode... 

    Titania nanotubes decorated with Zn-doped titania nanoparticles as the photoanode electrode of dye-sensitized solar cells

    , Article Energy Technology ; Volume 5, Issue 9 , 2017 , Pages 1571-1578 ; 21944288 (ISSN) Mokarami Ghartavol, H ; Afshar, A ; Mohammadi, M. R ; Chau Nan Hong, F ; Jeng, Y. R ; Sharif University of Technology
    Abstract
    We decorated Zn-doped TiO2-nanoparticle-based photoanodes with carbon nanotube (CNT)-derived TiO2 nanotubes (TNs) to enhance the power conversion efficiency of dye-sensitized solar cells (DSCs). X-ray photoelectron spectroscopy analysis verified that Zn ions, in the range of 0 to 1 at %, were successfully doped into the TiO2 lattice. Field-emission SEM and TEM images of the TNs, as derived from the sol–gel template-assisted route, revealed that a uniform TiO2 coating with a thickness of 60 to 120 nm was deposited on the surface of the CNT template through a noncovalent route. We observed that the cell efficiency improved from 6.80 for pure TiO2 to 7.52 for 0.75 at % Zn-doped TiO2... 

    A Rapid synthesis of vertically aligned taper-like k-doped zno nanostructures to enhance dye-sensitized solar cell efficiency

    , Article JOM ; Volume 71, Issue 12 , 2019 , Pages 4850-4856 ; 10474838 (ISSN) Sharifi Miavaghi, A ; Musavi, M ; Nanchian, H ; Pezeshkzadeh, S. A ; Sharif University of Technology
    Springer  2019
    Abstract
    Large-scale K-doped ZnO nanotapers were successfully grown on an indium tin oxide (ITO) substrate using a facile electrochemical route. The structural and morphologic analysis exhibited that the K-doped ZnO nanostructures had a nanotaper morphology and strong preferential [0001] c-axis direction with a hexagonal polycrystalline structure. The optical results show that the incorporation of K+ ions as the donors in a ZnO lattice leads to substantial modulation of the band gap structure of ZnO nanotapers, which results in a redshift in the ultraviolet emission peaks. The considerable enhancement of performance in K-doped ZnO-based dye-sensitized solar cells (DSSCs) can be related to the doping... 

    Cu2ZnSnS4 as a hole-transport layer in triple-cation perovskite solar cells: Current density versus layer thickness

    , Article Ceramics International ; Volume 48, Issue 1 , 2022 , Pages 711-719 ; 02728842 (ISSN) Rastegar Moghadamgohari, Z ; Heidariramsheh, M ; Taghavinia, N ; Mohammadpour, R ; Rasuli, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Cu2ZnSnS4 (CZTS) is a good candidate for cost-effective perovskite solar cells (PSCs) due to its direct bandgap with a value of 1.4–1.5 eV. In this study, we investigate CZTS ink as an inorganic hole-transport-layer (HTL) in CsMAFAPbIBr mixed halide PSCs. We study the cell efficiency and hole extraction from the perovskite layer for different thicknesses of HTL. The optimized device exhibits better hole selectivity, and the best efficiency of the device (12.84%) is achieved for the CZTS layer with a thickness of 159 nm. The prepared samples were also tested by open-circuit voltage decay analysis and electrochemical impedance spectroscopies. Results show that the optimized device effectively... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Charge transport properties in nanocomposite photoanodes of DSSCs: Crucial role of electronic structure

    , Article EPJ Applied Physics ; Volume 57, Issue 2 , February , 2012 ; 12860042 (ISSN) Samadpour, M ; Taghavinia, N ; Iraji Zad, A ; Marandi, M ; Tajabadi, F ; Sharif University of Technology
    Abstract
    TiO 2 nanorods, TiO 2 nanorod/TiO 2 nanoparticle and TiO 2 nanorod/ZnO nanoparticle composite structures were integrated as photoanodes in backside illuminated dye-sensitized solar cells (DSSCs). Incorporation of TiO 2 nanoparticles into the bare nanorods increased the dye loading and improved the short-circuit current density (J sc) from 2.22 mA/cm 2 to 3.57 mA/cm 2. ZnO nanoparticles electrochemically grown into the TiO 2 nanorod layer could increase the surface area. Nevertheless, this considerably reduced the J sc to 0.57 mA/cm 2 and consequently cell efficiency. Electrochemical impedance spectroscopy (EIS) results showed that ZnO incorporated samples have better effective diffusion... 

    Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes

    , Article Solar Energy ; Volume 184 , 2019 , Pages 115-126 ; 0038092X (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although morphological disorder of nanotube structure is further down than the nanoparticular electrode, its density of traps are the hindering effects in the charge transport. In this study, crack-free TiO2 nanotube membranes, which obtained through a re-anodizing process, are fixed on transparent fluorine–tin-oxide glass by applying a few drops of Titanium Isopropoxide without needing the TiO2 powder paste. Front-side illuminated dye sensitized solar cells fabricated by undoped, N-doped and blue TiO2 nanotube membranes are investigated. The electrical characteristics of TiO2 nanotube based dye sensitized solar cells are followed by theoretical analysis using simple one-diode model.... 

    Controlling electron transport rate and recombination process of TiO 2 dye-sensitized solar cells by design of double-layer films with different arrangement modes

    , Article Electrochimica Acta ; Volume 78 , 2012 , Pages 384-391 ; 00134686 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    Abstract
    TiO 2 dye-sensitized solar cells (DSSCs) in the form of double-layer films, containing an under-layer and an over-layer, with various crystal structures (i.e., anatase and rutile phases) and morphologies (i.e., nanoparticle and nanowire) were reported. It was found that the photovoltaic performance of TiO 2 DSSCs depends on the morphology, crystal structure, light scattering effect, optical band gap energy and arrangement of the under- and over-layer films. The double-layer solar cell made of anatase-TiO 2 nanoparticles as the under-layer and anatase-TiO 2 nanowires as the over-layer (i.e., AW solar cell) showed the highest power conversion efficiency and fill factor of 6.34% and 62.6%,...