Loading...
Search for: cell-interaction
0.005 seconds

    Mathematical modeling of dermal wound healing: A numerical solution

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 153-156 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by numerical method  

    Dermal wound healing-remodeling phase: A biological review

    , Article 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 26 February 2010 through 28 February 2010, Singapore ; Volume 2 , 2010 , Pages 88-90 ; 9781424455850 (ISBN) Azizi, A ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by finite element method  

    Directional migration and differentiation of neural stem cells within three-dimensional microenvironments

    , Article Integrative Biology (United Kingdom) ; Volume 7, Issue 3 , Jan , 2015 , Pages 335-344 ; 17579694 (ISSN) Shamloo, A ; Heibatollahi, M ; Mofrad, M. R. K ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Harnessing neural stem cells to repair neuronal damage is a promising potential treatment for neuronal diseases. To enable future therapeutic efficacy, the survival, proliferation, migration and differentiation of neural stem/progenitor cells (NPCs) should be accurately studied and optimized in in vitro platforms before transplanting these cells into the body for treatment purposes. Such studies can determine the appropriate quantities of the biochemical and biomechanical factors needed to control and optimize NPC behavior in vivo. In this study, NPCs were cultured within a microfluidic device while being encapsulated within the collagen matrix. The migration and differentiation of NPCs were... 

    Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing

    , Article Materials ; Volume 8, Issue 9 , 2015 , Pages 6401-6418 ; 19961944 (ISSN) Ostadhossein, F ; Mahmoudi, N ; Morales Cid, G ; Tamjid, E ; Navas Martos, F. J ; Soriano Cuadrado, B ; Paniza, J. M. L ; Simchi, A ; Sharif University of Technology
    MDPI AG  2015
    Abstract
    Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs) with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are... 

    A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 15, Issue 5 , 2016 , Pages 1229-1243 ; 16177959 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The shape and morphology of endothelial cells (ECs) lining the blood vessels are a good indicator for atheroprone and atheroprotected sites. ECs of blood vessels experience both wall shear stress (WSS) and cyclic stretch (CS). These mechanical stimuli influence the shape and morphology of ECs. A few models have been proposed for predicting the morphology of ECs under WSS or CS. In the present study, a mathematical cell population model is developed to simulate the morphology of ECs under combined WSS and CS conditions. The model considers the cytoskeletal filaments, cell–cell interactions, and cell–extracellular matrix interactions. In addition, the reorientation and polymerization of... 

    Mathematical modeling of dermal wound healing's remodeling phase: a finite element solution

    , Article 2009 International Association of Computer Science and Information Technology - Spring Conference, IACSIT-SC 2009, Singapore, 17 April 2009 through 20 April 2009 ; 2009 , Pages 529-532 ; 9780769536538 (ISBN) Azizi, A ; Seifipour, N ; Sharif University of Technology
    2009
    Abstract
    Though wound healing process is well-researched, this area is poorly known. One reason is that all interactions have not been discovered, the main reason, though, is that the involved processes interact in a very complicated manner with nonlinear feedback. Such complex feedback mechanisms can be easily addressed by mathematical modeling. This paper contains a review of the mathematical modeling of cell interaction with extracellular matrix components during the process of dermal wound healing with focusing on remodeling phase. The models are of partial differential equation type and solved by finite element method. © 2009 IEEE  

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering

    , Article Journal of Biotechnology ; Volume 212 , 2015 , Pages 71-89 ; 01681656 (ISSN) Shamloo, A ; Mohammadaliha, N ; Mohseni, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal... 

    Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris

    , Article ASAIO Journal ; Volume 64, Issue 2 , 2018 , Pages 261-269 ; 10582916 (ISSN) Ranjbarvan, P ; Mahmoudifard, M ; Kehtari, M ; Babaie, A ; Hamedi, S ; Mirzaei, S ; Soleimani, M ; Hosseinzadeh, S ; Sharif University of Technology
    Lippincott Williams and Wilkins  2018
    Abstract
    Natural compounds containing polysaccharide ingredients have been employed as candidates for treatment of skin tissue. Herein, for the first time, electrospinning setup was proposed to fabricate an efficient composite nanofibrous structure of Beta vulgaris (obtained from Beet [Chenopodiaceae or Amaranthaceae]) belonged to polysaccharides and an elastic polymer named nylon 66 for skin tissue engineering. Both prepared scaffolds including noncomposite and composite types were studied by Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical assay, and contact angle. Scanning electron microscope examinations have approved the uniform and homogeneous... 

    Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 881-893 ; 01418130 (ISSN) Mohseni, M ; S. A., A. R ; H Shirazi, F ; Nemati, N. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite... 

    Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 182 , 2019 ; 09277765 (ISSN) Hasany, M ; Taebnia, N ; Yaghmaei, S ; Shahbazi, M. A ; Mehrali, M ; Dolatshahi Pirouz, A ; Arpanaei, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric... 

    Unraveling cancer metastatic cascade using microfluidics-based technologies

    , Article Biophysical Reviews ; Volume 14, Issue 2 , 2022 , Pages 517-543 ; 18672450 (ISSN) Hakim, M ; Kermanshah, L ; Abouali, H ; Hashemi, H. M ; Yari, A ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the...