Search for: cell-line
0.009 seconds
Total 108 records

    Reload purified Melittin and Lactoferrin on Perfluorooctyl Bromide nanoparticles (PFOB-NPs) and examine the distribution of particle size, zeta potential and confirmation of their accession on the nanoparticles via tryptophan fluorescence and circular dichroism (CD) and its anti-cancer effects on human breast cancer cell line MCF7

    , Article Oriental Journal of Chemistry ; Volume 32, Issue 6 , 2016 , Pages 3099-3111 ; 0970020X (ISSN) Rahmani Incheh Keykanlu, H ; Zibaei, S ; Ardjmand, M ; Safekordi, A. A ; Sharif University of Technology
    Oriental Scientific Publishing Company  2016
    Acording to the prevalence of cancer in today's societies, it is too important to find new drugs for that treatment. Cationic antimicrobial peptides that are able to eliminate a wide range of bacteria, fungi, parasites, viruses and unicellular, are natural anti-cancer agents. In the present study, the effect of cationic peptides of bee venom Melittin (ML) and Lactoferrin (LF) of camel milk which was loaded on the Perfluorooctyl Bromide (PFOB) nanoparticles, were examined on MCF7 cells. Nanoparticles using oil in water emulsion was prepared by ultra-thoracic and ultrasonic. Then ML and LF were separately added to the nanoparticles then incorporation of them were confirmed by tryptophan... 

    Phytochemical characterization and anti-cancer properties of extract of Ephedra foeminea (Ephedraceae) aerial parts

    , Article Tropical Journal of Pharmaceutical Research ; Volume 20, Issue 8 , 2021 , Pages 1675-1681 ; 15965996 (ISSN) Al Saraireh, Y. M ; Youssef, A. M. M ; Alshammari, F. O. F. O ; Al Sarayreh, S. A ; Al Shuneigat, J. M ; Alrawashdeh, H. M ; Mahgoub, S. S ; Sharif University of Technology
    University of Benin  2021
    Purpose: To evaluate the phytochemical profile of methanol extract of Ephedra foeminea and assess its anti-carcer effect on a large set of normal and cancerous cell lines Methods: Extraction of air-dried powder of aerial parts of E. foeminea was carried out with methanol. The bioactive compounds in the extract were determined using gas chromatography/mass spectrometry (GC-MS). The anti-cancer effect of the extract was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay against various types of normal and cancer cell lines. Serial concentrations of plant extract were used, ranging from 7.812 to1000 μg/mL. Doxorubicin (DOX) served as standard drug. The... 

    Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines

    , Article Toxicology and Industrial Health ; Volume 34, Issue 5 , 2018 , Pages 339-352 ; 07482337 (ISSN) Naderi, S ; Zare, H ; Taghavinia, N ; Irajizad, A ; Aghaei, M ; Panjehpour, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Introduction: Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. Methods: The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was... 

    A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip

    , Article Analytica Chimica Acta ; Volume 1186 , 2021 ; 00032670 (ISSN) Hakim, M ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Isolation and characterization of circulating tumor cells (CTCs) found in blood samples of cancer patients have been considered as a reliable source for cancer prognosis and diagnosis. A new continuous microfluidic platform has been designed in this investigation for simultaneous capture and characterization of CTCs based on their deformability. The deformability-based chip (D-Chip) consists of two sections of separation and characterization where slanted weirs with a gap of 7 μm were considered. Although sometimes CTCs and leukocytes have the same size, the deformability differs in such a way that can be exploited for enrichment purposes. MCF7 and MDA-MB-231 cell lines were used for the... 

    Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer

    , Article International Journal of Pharmaceutics ; Volume 515, Issue 1-2 , 2016 , Pages 607-615 ; 03785173 (ISSN) Esfandyari Manesh, M ; Mohammadi, A ; Atyabi, F ; Nabavi, S. M ; Ebrahimi, S. M ; Shahmoradi, E ; Shiri Varnamkhasti, B ; Ghahremani, M. H ; Dinarvand, R ; Sharif University of Technology
    Elsevier B.V  2016
    Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles. The IC50 of targeted nanoparticles was 28 and 26% of free paclitaxel in MCF7 and T47D cells at 48 h, respectively. Confocal laser scanning electron... 

    Design and fabrication of a novel microfluidic system for enrichment of circulating tumor cells with the assistance of computer simulations

    , Article Avicenna Journal of Medical Biotechnology ; Volume 11, Issue 4 , 2019 , Pages 277-284 ; 20082835 (ISSN) Dorrigiv, D ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Avicenna Research Institute  2019
    Background: Cancer is the first cause of death in developed countries. The heterogeneous nature of cancer requires patient-specified treatment plans. One reliable approach is collecting Circulating Tumour Cells (CTCs) and using them for prognosis and drug response assessment purposes. CTCs are rare and their separation from normal cell requires high-accuracy methods. Methods: A microfluidic cell capture device to separate CTCs from peripheral blood is presented in this study. The CTC separation device applies hydrodynamic forces to categorize cells according to their sizes. The proposed device is designed and evaluated by numerical simulations and validated experimentally. The simulation... 

    Graphene nanomesh promises extremely efficient in vivo photothermal therapy

    , Article Small ; Volume 9, Issue 21 , 2013 , Pages 3593-3601 ; 16136810 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 μg mL -1) exhibits about 4.2- and 22.4-fold higher NIR... 

    Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds

    , Article Materials Science and Engineering C ; Volume 48 , March , 2015 , Pages 384-390 ; 09284931 (ISSN) Ardeshirzadeh, B ; Aboutalebi Anaraki, N ; Irani, M ; Roshanfekr Rad, L ; Shamshiri, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Polyethylene oxide (PEO)/chitosan (CS)/graphene oxide (GO) electrospun nanofibrous scaffolds were successfully developed via electrospinning process for controlled release of doxorubicin (DOX). The SEM analysis of nanofibrous scaffolds with different contents of GO (0.1, 0.2, 0.5 and 0.7 wt.%) indicated that the minimum diameter of nanofibers was found to be 85 nm for PEO/CS/GO 0.5% nanofibers. The π-π stacking interaction between DOX and GO with fine pores of nanofibrous scaffolds exhibited higher drug loading (98%) and controlled release of the DOX loaded PEO/CS/GO nanofibers. The results of DOX release from nanofibrous scaffolds at pH 5.3 and 7.4 indicated strong pH dependence. The... 

    Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy

    , Article Journal of Drug Targeting ; Volume 26, Issue 3 , 2018 , Pages 267-277 ; 1061186X (ISSN) Ranjbar Navazi, Z ; Eskandani, M ; Johari Ahar, M ; Nemati, A ; Akbari, H ; Davaran, S ; Omidi, Y ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Nanoscaled quantum dots (QDs), with unique optical properties have been used for the development of theranostics. Here, InP/ZnS QDs were synthesised and functionalised with folate (QD-FA), D-glucosamine (QD-GA) or both (QD-FA-GA). The bi-functionalised QDs were further conjugated with doxorubicin (QD-FA-GA-DOX). Optimum Indium to fatty acid (In:MA) ratio was 1:3.5. Transmission electron microscopy (TEM) micrographs revealed spherical morphology for the QDs (11 nm). Energy-dispersive spectroscopy (EDS) spectrum confirmed the chemical composition of the QDs. MTT analysis in the OVCAR-3 cells treated with bare QDs, QD-FA, QD-GA, QD-FA-GA and QD-FA-GA-DOX (0.2 mg/mL of QDs) after 24 h indicated... 

    Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations

    , Article Journal of Microencapsulation ; Volume 36, Issue 8 , 2019 , Pages 715-727 ; 02652048 (ISSN) Rafati, N ; Zarrabi, A ; Caldera, F ; Trotta, F ; Ghias, N ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Aim: In this study, a nanosponge structure was synthesised with capability of encapsulating curcumin as a model polyphenolic compound and one of the herbal remedies that have widely been considered due to its ability to treat cancer. Methods: FTIR, DSC and XRD techniques were performed to confirm the formation of the inclusion complex of the nanosponge-drug. Results: DSC and XRD patterns showed an increasing stability and a decreasing crystallinity of curcumin after formation of inclusion complex. Encapsulation efficiency was 98% (w/w) and a significant increase was observed in loading capacity (184% w/w). The results of cytotoxicity assessments demonstrated no cell toxicity on the healthy... 

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer

    , Article Advanced Powder Technology ; Volume 32, Issue 12 , 2021 , Pages 4711-4722 ; 09218831 (ISSN) Rezaie Amale, F ; Ferdowsian, S ; Hajrasouliha, S ; Kazempoor, R ; Mirzaie, A ; Sedigh Dakkali, M ; Akbarzadeh, I ; Mohammadmahdi Meybodi, S ; Mirghafouri, M ; Sharif University of Technology
    Elsevier B.V  2021
    In the current study, gold nanoparticles (AuNPs) were prepared using the green synthesis method using Artemisia annua extract, loaded into niosomes, and investigated their cytotoxicity and apoptotic effects. To optimize the niosomal formulation containing AuNPs, the effects of surfactants: cholesterol molar ratio, Span 60: Tween 60 M ratio, and AuNP concentration (µg/mL) were investigated. After examining the drug release profile, mathematical models were assessed to predict release kinetic. The cytotoxicity of noisome encapsulated AuNPs and free AuNPs was evaluated against human ovarian cancer cell line (A2780) by MTT assay. The apoptotic/necrosis ratio was studied using flow cytometry as... 

    Cell "vision": Complementary factor of protein corona in nanotoxicology

    , Article Nanoscale ; Volume 4, Issue 17 , 2012 , Pages 5461-5468 ; 20403364 (ISSN) Mahmoudi, M ; Saeedi-Eslami, S. N ; Shokrgozar, M. A ; Azadmanesh, K ; Hassanlou, M ; Kalhor, H. R ; Burtea, C ; Rothen Rutishauser, B ; Laurent, S ; Sheibani, S ; Vali, H ; Sharif University of Technology
    RSC  2012
    Engineered nanoparticles are increasingly being considered for use as biosensors, imaging agents and drug delivery vehicles. Their versatility in design and applications make them an attractive proposition for new biological and biomedical approaches. Despite the remarkable speed of development in nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and the presentation of the proteins on their surface could lead to a different in vivo response than an uncoated particle. Here, in addition to protein adsorption, we are going to introduce concept of cell "vision",... 

    Doxorubicin hydrochloride - loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release

    , Article International Journal of Biological Macromolecules ; Volume 116 , 2018 , Pages 378-384 ; 01418130 (ISSN) Radmansouri, M ; Bahmani, E ; Sarikhani, E ; Rahmani, K ; Sharifianjazi, F ; Irani, M ; Sharif University of Technology
    In the present study, the potential of doxorubicin hydrochloride (DOX)-loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers was studied to investigate the simultaneous effect of hyperthermia and chemotherapy against melanoma cancer B16F10 cell lines. The cobalt ferrite nanoparticles were synthesized via microwave heating method. The titanium oxide nanoparticles were mixed with cobalt ferrite to control the temperature rise. The synthesized nanoparticles and nanofibers were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometer (VSM) analysis. The DOX loading efficiency and in vitro drug release of... 

    Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands

    , Article International Journal of Biological Macromolecules ; Volume 126 , 2019 , Pages 310-317 ; 01418130 (ISSN) Pourjavadi, A ; Doroudian, M ; Ahadpour, A ; Azari, S ; Sharif University of Technology
    Elsevier B.V  2019
    Scaffolds for tissue engineering of specific sites such as cardiac, nerve, and bone tissues need a comprehensive design of three dimensional materials that covers all aspects of chemical composition and physical structures, required for regeneration of desired cells. Hydrogels, possessing highly hydrated and interconnected structures, are promising materials for tissue engineering applications. Improvement of an injectable hydrogel from biocompatible polysaccharides and poly‑N‑isopropyl acryl amide enriched with Au nanoparticles are the main goal of this study. Two main enhancements in this study are included mixture design of the components and addition of Au nanoparticles to access a... 

    Zn-rich (GaN)1−x(ZnO)x: a biomedical friend?

    , Article New Journal of Chemistry ; Volume 45, Issue 8 , 2021 , Pages 4077-4089 ; 11440546 (ISSN) Bagherzadeh, M ; Rabiee, N ; Fatahi, Y ; Dinarvand, R ; Sharif University of Technology
    Royal Society of Chemistry  2021
    A Zn-Rich (GaN)1−x(ZnO)xnanostructure was synthesized with the assistance of a high-gravity technique in order to reduce the reaction time and temperature. The synthesized inorganic nanomaterial has been applied in both drug and gene delivery systems, and as the first fully inorganic nanomaterial, it was investigated in a comprehensive cellular investigation as well. In order to increase the potential bioavailability, as well as the interactions with the pCRISPR, the nanomaterial was enriched with additional Zn ions. The nanomaterial and the final nanocarrier were characterized at each step before and after any biological analysisviaFESEM, AFM, TEM, FTIR and XRD. The polymer coated... 

    Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    , Article Materials Science and Engineering C ; Volume 33, Issue 3 , 2013 , Pages 1498-1505 ; 09284931 (ISSN) Abdolahad, M ; Janmaleki, M ; Mohajerzadeh, S ; Akhavan, O ; Abbasi, S ; Sharif University of Technology
    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is... 

    In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells

    , Article Biotechnology Letters ; Volume 32, Issue 5 , May , 2010 , Pages 649-654 ; 01415492 (ISSN) Asadishad, B ; Vossoughi, M ; Alamzadeh, I ; Sharif University of Technology
    Doxorubicin (DOX), a common cancer chemotherapeutics, was conjugated to folate-modified thiolated-polyethylene glycol-functionalized gold nanoparticles. The in vitro, controlled release behavior of DOX-loaded gold nanoparticles was observed using porous dialysis membranes (cut-off = 2 kDa). DOX-loaded gold nanoparticles had higher cytotoxicity for folate-receptor-positive cells (KB cells) compared to folate-receptor-negative cells (A549 cells) which were 48 and 62% viable for 10 μM doxorubicin, respectively. This indicates the potential of these nano-carriers for targeted-delivery. In addition, healthy cell viability was 69% for 10 μM free doxorubicin whereas for the same content of drug in... 

    Tunable surface plasmon resonance–based remote actuation of bimetallic core-shell nanoparticle-coated Stimuli responsive polymer for switchable chemo-photothermal synergistic cancer therapy

    , Article Journal of Pharmaceutical Sciences ; Volume 107, Issue 10 , 2018 , Pages 2618-2627 ; 00223549 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Hadilou, N ; Sharif University of Technology
    New dual light/temperature-responsive nanocarriers were synthesized using bimetallic plasmonic Au-Ag and Ag-Au nanoparticles (NPs) as cores of vehicles which subsequently functionalized with an upper critical solubility temperature–based poly acrylamide-co-acrylonitrile using reversible addition-fragmentation chain transfer for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. The bimetallic cores were assigned to sense wavelengths close to the localized surface plasmon resonance of monometallic NP shell to produce heat which not only can increase the surrounding temperature over the upper critical solubility temperature of polymer to open its valves and promote drug... 

    Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation

    , Article Journal of Drug Delivery Science and Technology ; Volume 57 , 2020 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Bourbour, M ; Noorbazargan, H ; Lajevardi, A ; Sadat Shilsar, S. M ; Heidari, F ; Mousavian, S. M ; Sharif University of Technology
    Editions de Sante  2020
    Developing drug delivery systems with both antibacterial and anti-cancer effects is of importance in the treatment process of infection-associated cancers, especially prostate cancer. In this study, Span 60, Tween 60, and cholesterol were used to formulate doxycycline-loaded niosomes as a promising drug carrier system as either antibacterial or anticancer formulation. The formulation process was optimized by multi-objective response surface methodology (RSM), and then characterized. The developed niosomal formulation showed great storage stability for up to 2 weeks. In addition, they showed remarkable drug release in acidic solution (pH = 3) compared with physiological pH (7.4). The in-vitro...