Loading...
Search for: ceramic-glass
0.005 seconds

    Effects of nucleation agents on the preparation of transparent glass-ceramics

    , Article Journal of the European Ceramic Society ; Volume 32, Issue 11 , August , 2012 , Pages 2989-2994 ; 09552219 (ISSN) Ghasemzadeh, M ; Nemati, A ; Baghshahi, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Formation of transparent glass-ceramic in the system MgO-SiO 2-Al 2O 3-K 2O-B 2O 3-F with and without addition of LiF and NaF has been investigated. Crystallization of glass-sample was conducted by controlled thermal heat-treatment, at determined nucleation and crystallization temperatures. In this regard, the effects of addition of LiF and NaF were investigated on the crystallization behavior and transparency of the samples. Low transmission (less than 80% at 600. nm) was observed in the basic composition (K).The addition of NaF and LiF caused more intense phase separation in the system. The results indicated that the glass-ceramic can remain transparent if fine grains with nano size are... 

    Properties, crystallization mechanism and microstructure of lithium disilicate glass-ceramic

    , Article Journal of Non-Crystalline Solids ; Volume 356, Issue 4-5 , 2010 , Pages 208-214 ; 00223093 (ISSN) Goharian, P ; Nemati, A ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    Abstract
    In this study, lithium disilicate glass-ceramic in the TiO2-ZrO2-Li2O-CaO-Al2O3-SiO2 system was investigated for dentistry applications by incorporation of P2O5 and Nb2O5 as nucleation agent. The influence of the particles size (nano and submicron size) and nucleating agents on the crystalline phases, microstructure, crystallization mechanism and mechanical properties were investigated. Our data indicated that in ceramic glass with nano and submicron P2O5, the main crystalline phase was lithium disilicate. The results also showed that change of P2O5 particle's size had significant effect on the crystalline phases and microstructure. By replacement of submicron P2O5 with submicron Nb2O5,... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; 2021 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2021
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy... 

    Synthesis and characterization of diopside glass-ceramic matrix composite reinforced with aluminum titanate

    , Article Ceramics International ; Volume 35, Issue 4 , 2009 , Pages 1447-1452 ; 02728842 (ISSN) Yousefi, M ; Alizadeh, P ; Eftekhari Yekta, B ; Molaie, F ; Ghafoorian, N ; Montazerian, M ; Sharif University of Technology
    2009
    Abstract
    Glass-ceramic composites in the SiO2-CaO-MgO-(Na2O) system, reinforced with 5, 10 and 20 wt.% aluminum titanate were synthesized by pressureless sintering. Optimum sintering temperatures with maximum relative density were determined for each composition. The composites were fired above the crystallization peak temperature of glass-ceramic. Mechanical properties of glass-ceramic and sintered composites, such as fracture toughness, flexural strength and Vickers microhardness, were investigated. The sintered composites were characterized by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that the composite containing 10...