Loading...
Search for: ceramic-volume-fraction
0.012 seconds

    Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August , 2010 , Pages 539-544 ; 9780791849033 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    The purpose of this paper is the enhancement of the AFM sensitivity through the selection of an optimized FGM micro cantilever beam. In this paper, resonant frequencies and sensitivities of first two modes of micro cantilever which is made of functionally graded materials are investigated and a relationship is developed to evaluate the sensitivity of FGM micro cantilever. Effect of volume fraction of materials and surface contact stiffness on the resonant frequencies and sensitivities are studied. The rectangular FGM beam is modeled by an Euler-Bernoulli beam theory. It is assumed that beam is made of a mixture of metal and ceramic with properties varying through the thickness following a... 

    Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 6 , 2009 , Pages 539-544 ; 9780791849033 (ISBN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Sharif University of Technology
    ASME  2009
    Abstract
    The purpose of this paper is the enhancement of the AFM sensitivity through the selection of an optimized FGM micro cantilever beam. In this paper, resonant frequencies and sensitivities of first two modes of micro cantilever which is made of functionally graded materials are investigated and a relationship is developed to evaluate the sensitivity of FGM micro cantilever. Effect of volume fraction of materials and surface contact stiffness on the resonant frequencies and sensitivities are studied. The rectangular FGM beam is modeled by an Euler-Bernoulli beam theory. It is assumed that beam is made of a mixture of metal and ceramic with properties varying through the thickness following a... 

    Residual stresses in autofrettaged vessel made of functionally graded material

    , Article Engineering Structures ; Volume 31, Issue 12 , 2009 , Pages 2930-2935 ; 01410296 (ISSN) Haghpanah Jahromi, B ; Farrahi, G. H ; Maleki, M ; Nayeb Hashemi, H ; Vaziri, A ; Sharif University of Technology
    Abstract
    We used an extension of the Variable Material Property method for materials with varying elastic and plastic properties to evaluate the residual stresses in an autofrettaged thick vessel made of functionally graded metal-ceramic composite. It is shown that the reinforcement of the metal vessel by ceramic particles, with an increasing ceramic volume fraction from inner to outer radius, increases the magnitude of compressive residual stresses at the inner section of an autofrettaged vessel and thus, could lead to better fatigue life and load-carrying capacity of the vessel. A parametric study is carried out to highlight the role of ceramic particle strength and spatial distribution, as well as...