Loading...
Search for: cerium-compounds
0.005 seconds

    The conduction mechanism in Gd1-x-zCexCazBa2Cu3O7-δ

    , Article Superconductor Science and Technology ; Volume 21, Issue 9 , 4 July , 2008 ; 09532048 (ISSN) Mazaheri, M ; Mofakham, S ; Akhavan, M ; Sharif University of Technology
    2008
    Abstract
    We have investigated the substitution of Ce and divalent Ca with a radius similar to Gd in Gd1-x-zCexCazBa 2Cu3O7-δ. We have prepared Gd 1-x-zCexCazBa2Cu3O 7-δ compounds with different concentrations of Ce and Ca by the standard solid-state reaction technique. X-ray diffraction (XRD) experiments are performed and the results are refined by the Rietveld method. XRD analysis shows a predominantly single-phase perovskite structure with orthorhombic Pmmm symmetry. In Gd1-x-zCexCazBa2Cu 3O7-δ compounds, induced suppression of T c due to Ce doping is compensated by hole doping with increasing Ca substitution for Gd. With the increase of Ca content, Tc increases up to an optimum value; thereafter... 

    Raman Study of Tb-doped YBCO and Ce-doped GdBCO

    , Article Physica C: Superconductivity and its Applications ; Volume 468, Issue 13 , 2008 , Pages 985-990 ; 09214534 (ISSN) Mozaffari, S ; Akhavan, M ; Sharif University of Technology
    2008
    Abstract
    The phase formation and the variation of the normal phonon frequencies of high temperature superconductors YBa2Cu3O7-δ and GdBa2Cu3O7-δ upon doping Tb and Ce for Y and Gd, respectively, have been investigated using XRD and Raman spectroscopy measurements. It is found that the increase of doping content causes the formation of impurity phases that can be detected in the XRD and Raman spectra, and results in the suppression of superconductivity. Moreover, analysis of the Raman peaks reveals that substitutions of Tb and Ce for Y and Gd in the parent structure are restricted to low concentrations in favor of impurity island formation. © 2008  

    Effect of Ce substitution in RuGd2-xCexSr 2Cu2O10-δ (Ru-1222)

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 2982-2985 ; 18626351 (ISSN) Hadipour, H ; Sabri, D ; Mirzadeh, M ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    We have studied the electrical and magnetic properties of RuGd 2-xCexSr2Cu2O10-δ (Ru-1222) with content of Ce = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, prepared by the standard solid-state reaction technique. To determine how the magnetic and superconducting properties of this layered cuprate system can be affected by Ce substitution, the resistivity and magnetoresistivity have been measured at various temperatures. Resistivity curves reveal the presence of four regions for various contents of x. In high temperatures, system is paramagnetic. Magnetic transition from paramagnetic state to antiferromagnetic state occurs at 140 K for x = 0, which varies very slowly with increasing Ce substitution for Gd.... 

    Heterogeneous water oxidation by bidentate schiff base manganese complexes in the presence of cerium(IV) ammonium nitrate

    , Article Transition Metal Chemistry ; Volume 34, Issue 4 , 2009 , Pages 367-372 ; 03404285 (ISSN) Najafpour, M. M ; Boghaei, D. M ; Sharif University of Technology
    2009
    Abstract
    Oxygen evolution was observed upon mixing solid manganese(III) bidentate Schiff base complexes with aqueous solutions of cerium(IV) ammonium nitrate. However, oxygen evolution was not observed upon mixing solutions of the complexes (in acetonitrile) with Ce(IV). Electron-withdrawing substituents on the Schiff base ligands (NO2, Br) enhanced the reactivity of the manganese complexes toward oxygen evolution. Oxygen evolution was also affected by R groups on the ligands, in the order Me > Et Bz. © 2009 Springer Science+Business Media B.V  

    Enhanced Activity of Pr6O11 and CuO Infiltrated Ce0.9Gd0.1O2 Based Composite Oxygen Electrodes

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 2 , January , 2020 Khoshkalam, M ; Faghihi Sani, M. A ; Tong, X ; Chen, M ; Hendriksen, P. V ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Operation of solid oxide fuel/electrolysis cells (SOFC/SOEC) at high temperatures (T > 850 °C) is accompanied by degradation phenomena, which severely affect the operational lifetime of the cell. Degradation processes are expected to occur slower at low temperatures. However, significant reduction in electrocatalytic activity of the oxygen electrode, is one of the major challenges in decreasing the operating temperature down to 500 °C-650 °C. Recently, Pr6O11 infiltrated Ce0.9Gd0.1O2 (CGO) based electrodes have been proposed to realize high electrochemical performance at intermediate temperature. In this study, Pr-oxide has been infiltrated into a well performing sub-micro... 

    Beneficial Role of oxygen in co and propylene oxidation over a pt-pd-based wiremesh catalyst as a retrofit emission control device for four-stroke gasoline spark-ignited motorcycles

    , Article Energy and Fuels ; Volume 35, Issue 12 , 2021 , Pages 10122-10133 ; 08870624 (ISSN) Lotfollahzade Moghaddam, A ; Hamzehlouyan, T ; Hosseini, V ; Mayer, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Over 200 million motorcycles in use worldwide account for a substantial portion of global mobile source total hydrocarbons (THC) and carbon monoxide (CO) emissions. In Tehran, capital of Iran, ultrarich inefficient combustion in gasoline-fueled motorcycles results in significantly high CO and THC emissions. Motorcycle catalysts can reduce CO and C3H6(as a representative hydrocarbon) emission factors by 60-80%. In the present work, CO and propylene oxidation over a commercial Pt-Pd-based wiremesh catalyst is studied in a flow reactor setup under simulated conditions relevant to 125 cc four-stroke gasoline carburetor motorcycles. Steady-state individual and co-oxidation tests for CO and... 

    Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    , Article Materials Science- Poland ; Volume 31, Issue 3 , 2013 , Pages 343-349 ; 01371339 (ISSN) Abolghasemi, Z ; Tamizifar, M ; Arzani, K ; Nemati, A ; Khanfekr, A ; Bolandi, M ; Sharif University of Technology
    Oficyna Wydawnicza Politechniki Wroclawskiej  2013
    Abstract
    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of... 

    Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process

    , Article Journal of Materials Science: Materials in Electronics ; Volume 23, Issue 9 , September , 2012 , Pages 1698-1704 ; 09574522 (ISSN) Roshanghias, A ; Kokabi, A. H ; Miyashita, Y ; Mutoh, Y ; Rezayat, M ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer  2012
    Abstract
    As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this study, accumulative roll bonding process was used as an effective alternative method for manufacturing high-strength, finely dispersed, void-free and highly uniform Sn-Ag-Cu/CeO 2 nanocomposite solders. Microstructural investigation of nanocomposite solders revealed that homogenous distribution of CeO 2 nanoparticle has been achieved and the eutectic as-cast morphology of the solder changed to recrystallized fine grained structure. As a result of severe plastic deformation during rolling, brittle and... 

    Synthesis and characterization of Ce-TZP/Al 2O 3 nanocomposites prepared via aqueous combustion

    , Article Journal of Alloys and Compounds ; Volume 514 , February , 2012 , Pages 150-156 ; 09258388 (ISSN) Asadirad, M ; Yoozbashizadeh, H ; Sharif University of Technology
    2012
    Abstract
    Nanocomposites of Ce-TZP/Al 2O 3 were synthesized by aqueous combustion, and urea, ammonium acetate and glycine were used as mixtures of fuels with the corresponding metal nitrates. Thermodynamic modeling was conducted to anticipate the effect of the alumina content on the exothermicity of the combustion procedure. The thermodynamic properties of the combustion reaction indicated that as the alumina content increased, the amount of gases produced during the reaction increased with a decrease in the adiabatic temperature. Furthermore, to reduce the particle size of the powders, a series of combustion reactions were performed to optimize the fuel composition and alumina content. Ce 0.1Zr 0.9O... 

    Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation

    , Article Chemical Engineering Journal ; Volume 148, Issue 2-3 , 2009 , Pages 306-311 ; 13858947 (ISSN) Seyfi, B ; Baghalha, M ; Kazemian, H ; Sharif University of Technology
    2009
    Abstract
    Modified perovskite-type oxides were synthesized through co-precipitation and conventional citrate methods. The synthesized perovskite materials had the nominal compositions of LaCoO3, LaCo0.8Cu0.2O3, La0.8Sr0.2Co0.8Cu0.2O 3, and La0.8M0.2FeO3 (where M = Ce and Sr). The catalytic activity of the perovskite samples (for low-temperature CO oxidation) was measured using a quartz reactor with an inlet gas mixture containing 97% N2, 1% O2, and 2% CO. The prepared perovskite samples were characterized by SEM, nitrogen adsorption (BET), XRF, and XRD analyses. The perovskite catalysts showed good structural and chemical stability up to 600 °C and high activity for the catalytic CO oxidation... 

    Improving oxygen electrodes by infiltration and surface decoration

    , Article 16th International Symposium on Solid Oxide Fuel Cells, SOFC 2019, 8 September 2019 through 13 September 2019 ; Volume 91, Issue 1 , 2019 , Pages 1413-1424 ; 19386737 (ISSN); 9781607688747 (ISBN) Hendriksen, P. V ; Khoshkalam, M ; Tong, X ; Tripkovic, D ; Faghihi Sani, M. A ; Chen, M ; High-Temperature Energy, Materials, and Processes; SOFC Society of Japan; The Electrochemical Society ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    For improving competitiveness of SOEC/SOFC-technology it is desirable to reduce the temperature of operation down towards 500 oC - 600 oC. This requires improvement of the oxygen electrode such that this does not limit performance. Here, we report results on modifying various back-bone type oxygen electrodes via infiltration of materials targeting a surface decoration with Pr-oxide or Pr,Ni,Cu-oxides. Different composite back-bone electrodes (based on micron-sized particles) were investigated; La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2, (LSCF/CGO), La0.6Sr0.4FeO3 (LSF), and LaNi0.6Fe0.4O3/Ce0.9Gd0.1O2 (LNF/CGO). Marked performance improvements could be achieved with the infiltration, including a... 

    Two-dimensional mechanism of electrical conductivity in Gd1-xCexBa2Cu3O7-δ

    , Article Journal of Physics Condensed Matter ; Volume 20, Issue 34 , 2008 ; 09538984 (ISSN) Mofakham, S ; Mazaheri, M ; Akhavan, M ; Sharif University of Technology
    2008
    Abstract
    Partial substitutions of Pr and Ce are known to suppress the superconducting state in REBa2Cu3O7-δ systems. We have substituted Ce for Gd in Gd1-xCexBa 2Cu3O7-δ compounds with x = 0.0-0.6 by the standard solid-state reaction technique. X-ray diffraction (XRD) experiments are performed and their results are refined by the Rietveld method. XRD analysis shows a predominantly single-phase perovskite structure with few impurity phases. Our resistivity results show that, by increasing the Ce content, Tc decreases, the transition temperature width increases, and in the normal state a metal-insulator transition (MIT) occurs at x c = 0.12. The normal state resistivity of the samples and their slopes... 

    An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3586-3591 ; 00255408 (ISSN) Aminzare, M ; Amoozegar, Z ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The synthesis of nano-sized CeO 2 powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner-Emmett-Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce... 

    The effect of chemical pressure in rutheno-cuprates

    , Article Physica C: Superconductivity and its Applications ; Volume 470, Issue 4 , 2010 , Pages 285-290 ; 09214534 (ISSN) Nikseresht, N ; Khajehnezhad, A ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Abstract
    We have studied the effect of negative chemical pressure in the RuGd 1.5(Ce 0.5-xPr x)Sr 2Cu 2O 10-δ with Pr content of 0.0 ≤ x ≤ 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ≤ x ≤ 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr 3+,4+ and Ce 4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the... 

    Synthesis and characterization of mixed–metal oxide nanoparticles (cenio3, cezro4, cecao3) and application in adsorption and catalytic oxidation–decomposition of asphaltenes with different chemical structures

    , Article Petroleum Chemistry ; Volume 60, Issue 7 , 2020 , Pages 731-743 Dehghani, F ; Ayatollahi, S ; Bahadorikhalili, S ; Esmaeilpour, M ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: This study investigates the catalytic activity of mixed–metal oxide nanoparticles with different surface acidities on asphaltene adsorption followed by catalytic oxidation–decomposition. Three different types of mixed–metal oxide nanoparticles (CeNiO3, CeCaO3 and CeZrO4) were synthesized, and their size, structure, and acid properties were characterized by field–emission scanning electron microscopy (FE–SEM), energy-dispersive X-ray spectroscopy (EDX), the high–resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement and ammonia temperature-programmed desorption (NH3–TPD). Asphaltenes were extracted... 

    Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: Effect of Ce:Ti molar ratio on physical and sensing properties

    , Article Sensors and Actuators, B: Chemical ; Volume 150, Issue 2 , 2010 , Pages 631-640 ; 09254005 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2-CeO2 thin films and powders were prepared by a straightforward aqueous particulate sol-gel route. Titanium (IV) isopropoxide and cerium chloride were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. The effect of Ce:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders crystallised at the low temperature of 500 °C, containing anatase-TiO2, rutile-TiO2 and cubic-CeO2 phases, as well as Ti 8O15, Ti3O5 and Ce 11O20 depending on annealing temperature and Ce:Ti molar...