Loading...
Search for: chain-length
0.006 seconds

    , M.Sc. Thesis Sharif University of Technology Mohmoudpour, Saeed (Author) ; Masihi, Mohsen (Supervisor)
    Abstract
    Fractured reservoirs contain about 85 percent of oil reservoirs and 90 percent of gas reservoirs in Iran. Full study of fractures as the main factor in fluid flow seem essential for these reservoirs. Recently a stochastic method based on the assumption that the elastic energy in the fractured media follows a Boltzmann distribution is proposed. The method utilizes an elastic energy function that sums the interactions of all pairs of fractures present in the model. The energy for each pair depends on the distance between the two fractures, their orientations, lengths and some other elastic medium properties. This objective function used in simulated annealing algorithm for generating fracture... 

    Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling

    , Article Journal of Chemical Thermodynamics ; Volume 65 , 2013 , Pages 220-232 ; 00219614 (ISSN) Safavi, M ; Ghotbi, C ; Taghikhani, V ; Jalili, A. H ; Mehdizadeh, A ; Sharif University of Technology
    2013
    Abstract
    New experimental results are presented for the solubility of carbon dioxide, hydrogen sulfide in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate ([C8mim][PF6]) at temperatures range from (303.15 to 353.15) K and pressures up to about 2 MPa. The solubility of the mixture of CO2/H2S in [C8mim][PF6] under various feed compositions were also measured at temperatures of (303.15, 323.15 and 343.15) K and the pressure up to 1 MPa. The solubility of carbon dioxide and hydrogen sulfide increased with increasing pressure and decreased with increasing temperature and the solubility of H2S is about three times that of CO2 in the particular ionic liquid studied. The measured data were... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Biodegradable ionic liquids: effects of temperature, alkyl side-chain length, and anion on the thermodynamic properties and interaction energies as determined by molecular dynamics simulations coupled with ab initio calculations

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 46 , November , 2015 , Pages 11678-11700 ; 08885885 (ISSN) Fakhraee, M ; Gholami, M. R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    The effects of incorporating the ester functional group (-C=OO-) into the side chain of the 1-alkyl-3-methylimidazolium cation ([C1COOCnC1im]+, n = 1, 2, 4) paired with [Br]-, [NO3]-, [BF4]-, [PF6]-, [TfO]-, and [Tf2N]- anions on the various thermodynamic properties and interaction energies of these biodegradable ionic liquids (ILs) were investigated by means of molecular dynamics (MD) simulations combined with ab initio calculations in the temperature range of 298-550 K. Excluding the simulated density, the highest values of the volumetric properties such as molar volume, isobaric expansion coefficient, and isothermal compressibility coefficient can be attributed to the largest cation... 

    Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: A molecular dynamic simulation

    , Article Molecular Physics ; Volume 106, Issue 8 , 2008 , Pages 1015-1023 ; 00268976 (ISSN) Jahangiri, S ; Taghikhani, M ; Behnejad, H ; Ahmadi, S. J ; Sharif University of Technology
    2008
    Abstract
    In this work, molecular dynamic simulation of the mixture of imidazolium based ionic liquids with alcohols is implemented in order to investigate mixing excess properties and some structural and physical properties of the mixture. Excess volumes and enthalpies are evaluated for 11 different mole fractions of ionic liquids at each 0.1, in the range of 0 to 1. Radial distribution function, cohesive energy density, potential of mean force, solvation energy, and diffusion coefficient are reported and analysed. The effects of the cationic alkyl chain length, in comparison with changes of the anions, on these properties are reported. Results reveal that the methanol molecule participates with its...