Loading...
Search for: characteristic-parameter
0.005 seconds

    Numerical Modeling of the Behavior of Base Plates with Various Degrees of Rigidity Under Cyclic Loads

    , M.Sc. Thesis Sharif University of Technology Rahimi, Javad (Author) ; Khonsari, Vahid (Co-Advisor)
    Abstract
    Due to the important role of base plates, both in transferring forces from the structure to the foundation, and also in transferring vibrations from soil to the structure, it is necessary to have sufficient knowledge on their behaviour and performance under monotonic and cyclic loading regimes. In fact, the behaviour of the supports of any structure cannot be identified without identifying the behaviour of its base plates. Numerous configurations with/without various types of attachments have been proposed and used for base plates. In this work, altogether six commonly-used types of base plates were studied and their behaviour under monotonic and cyclic loadings was obtained using commercial... 

    Fracture characterization from noisy displacement data using artificial neural networks

    , Article Engineering Fracture Mechanics ; Volume 271 , 2022 ; 00137944 (ISSN) Khaleghi, M ; Haghighat, E ; Vahab, M ; Shahbodagh, B ; Khalili, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Mechanical characterization of fractures, i.e., identifying their characteristic parameters such as energy release rate, is crucial to assess the safety and stability of structural members. This is generally achieved using a combination of finite element analysis and optimization. Machine learning models are increasingly used to characterize engineering problems. While such models have shown impressive performance on smooth data, their performance diminishes significantly on data with discontinuities and sharp gradients. For fractures, this issue is more severe due to the singular solutions in the vicinity of the fracture tips. To resolve this difficulty, leveraging classical fracture... 

    Interface effects on elastic behavior of an edge dislocation in a core-shell nanowire embedded to an infinite matrix

    , Article International Journal of Solids and Structures ; Volume 50, Issue 7-8 , 2013 , Pages 1177-1186 ; 00207683 (ISSN) Gutkin, M. Y ; Enzevaee, C ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the... 

    Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: Breakthrough curves, elution behavior and modeling studies

    , Article Annals of Nuclear Energy ; Volume 54 , April , 2013 , Pages 149-153 ; 03064549 (ISSN) Tavakoli, H ; Sepehrian, H ; Semnani, F ; Samadfam, M ; Sharif University of Technology
    2013
    Abstract
    Continuous fixed-bed column studies were carried out by using Amberlite CG-400 anion exchange resin for the recovery of uranium from aqueous solutions (synthetic solutions and uranium conversion facility (UCF) liquid waste). Effects of operating parameters such as flow rate and bed height were studied. The breakthrough capacity decreases with increasing flow rate, but this dependence was not significant with a long column. The maximum breakthrough capacity of uranium ions were achieved by CG-400 resin at a flow rate of 0.2 mL min-1 and bed height 9.1 cm (4 g resin). The elution behavior of uranium from CG-400 resin by various eluents have been investigated and the results show that 0.5 mol... 

    Study of junction and bias parameters in readout of phase qubits

    , Article Physica C: Superconductivity and its Applications ; Volume 475 , 2012 , Pages 60-68 ; 09214534 (ISSN) Zandi, H ; Safaei, S ; Khorasani, S ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    The exact numerical solution of the nonlinear Ginzburg-Landau equation for Josephson junctions is obtained, from which the precise nontrivial current density and effective potential of the Josephson junctions are found. Based on the resulting potential well, the tunneling probabilities of the associated bound states are computed which are in complete agreement with the reported experimental data. The effects of junction and bias parameters such as thickness of the insulating barrier, cross sectional area, bias current, and magnetic field are fully investigated using a successive perturbation approach. We define and compute figures of merit for achieving optimal operation of phase qubits and... 

    A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells

    , Article Optical and Quantum Electronics ; Volume 48, Issue 8 , 2016 ; 03068919 (ISSN) Movla, H ; Ghaffari, S ; Rezaei, E ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Carbon nanotubes (CNT) have unique electronic properties and remarkable optical properties. Despite of on layer thickness of CNTs, it has able to absorb photons from visible to far infrared and terahertz. These unique properties lets to create heterojunction devices by semiconductor/CNTs or metal/CNTs junctions e.g. photodiodes, sensor and heterojunction solar cell. The CNTs can play the role of a heterojunction component for charge separation as a high conductive network for charge transport and as a transparent electrode for light illumination and charge collection. The main objective of the present article is to establish a relation between interface recombination and the characteristics... 

    Modeling and preparation of activated carbon for methane storage II. neural network modeling and experimental studies of the activated carbon preparation

    , Article Energy Conversion and Management ; Volume 49, Issue 9 , September , 2008 , Pages 2478-2482 ; 01968904 (ISSN) Namvar Asl, M ; Soltanieh, M ; Rashidi, A ; Sharif University of Technology
    2008
    Abstract
    This study describes the activated carbon (AC) preparation for methane storage. Due to the need for the introduction of a model, correlating the effective preparation parameters with the characteristic parameters of the activated carbon, a model was developed by neural networks. In a previous study [Namvar-Asl M, Soltanieh M, Rashidi A, Irandoukht A. Modeling and preparation of activated carbon for methane storage: (I) modeling of activated carbon characteristics with neural networks and response surface method. Proceedings of CESEP07, Krakow, Poland; 2007.], the model was designed with the MATLAB toolboxes providing the best response for the correlation of the characteristics parameters and...