Loading...
Search for: characterization-of-catalysts
0.006 seconds

    Immobilized tungstate on magnetic poly(2-ammonium ethyl acrylamide): A high loaded heterogeneous catalyst for selective oxidation of sulfides using H2O2

    , Article Journal of Industrial and Engineering Chemistry ; Volume 44 , 2016 , Pages 73-81 ; 1226086X (ISSN) Zohreh, N ; Hosseini, S. H ; Pourjavadi, A ; Soleyman, R ; Bennett, C ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2016
    Abstract
    A heterogeneous tungstate-based catalyst has been prepared for selective oxidation of sulfides to sulfoxides in the presence of 30% H2O2. The catalyst was prepared via immobilization of high amounts of WO4 2− onto the cross-linked poly(ammonium ethyl acrylamide) coated magnetic nanoparticles (MNP). FT-IR, TEM, TGA, VSM, XRD, EDX, and CHN analysis were used for characterization of catalyst. Variety of sulfides successfully converted to the related sulfoxides using 1 mol% of catalyst at room temperature in high yields. The catalyst was easily recovered and reused up to 6 times without loss of activity  

    Mo(vi) complex supported on Fe3O4 nanoparticles: magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides

    , Article RSC Advances ; Volume 5, Issue 66 , Jun , 2015 , Pages 53349-53356 ; 20462069 (ISSN) Keypour, H ; Balali, M ; Haghdoost, M. M ; Bagherzadeh, M ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    A molybdenum complex, [MoO2Cl2(DMSO)2], was immobilized on amino propyl and Schiff base modified magnetic Fe3O4@SiO2 nanoparticles by covalent linkage. The resulting nanoparticles were used as efficient and recyclable catalysts for the selective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as the oxidant. The complete characterization of catalysts was carried out by means of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), elemental analysis, FT-IR and Raman microprobe... 

    Effect of drying conditions on the catalytic performance, structure, and reaction rates over the Fe-Co-Mn/MgO catalyst for production of light olefins

    , Article Bulletin of Chemical Reaction Engineering & Catalysis ; Volume 13, Issue 1 , 2018 , Pages 97-112 ; 19782993 (ISSN) Abdouss, M ; Arsalanfar, M ; Mirzaei, N ; Zamani, Y ; Sharif University of Technology
    Diponegoro University  2018
    Abstract
    The MgO-supported Fe-Co-Mn catalysts, prepared using co-precipitation procedure, were tested for production of light olefins via CO hydrogenation reaction. The effect of a range of drying conditions including drying temperature and drying time on the structure and catalytic performance of Fe-Co-Mn/MgO catalyst for Fischer-Tropsch synthesis was investigated in a fixed bed micro-reactor under the same operational conditions of T = 350 °C, P = 1 bar, H2/CO = 2/1, and GHSV = 4500 h-1. It was found that the catalyst dried at 120 °C for 16 h has shown the best catalytic performance for CO hydrogenation. Furthermore, the effect of drying conditions on different surface reaction rates was also...