Loading...
Search for: charge-transport
0.007 seconds

    Three hybrid GAs for discounted fixed charge transportation problems

    , Article Cogent Engineering ; Volume 5, Issue 1 , 2018 ; 23311916 (ISSN) Ghassemi Tari, F ; Hashemi, Z ; Sharif University of Technology
    Cogent OA  2018
    Abstract
    The problem of allocating heterogeneous fleet of vehicles to the existing distribution network for dispensing products fro. manufacturing firm t. set of depots is considered. It is assume. heterogeneous fleet of vehicles with the given capacities and total costs consisting o. discounted fixed cost an. variable cost proportional to the amount shipped is employed for handling products. To minimize the total transportation costs, the problem is modeled i. form of the nonlinear mixed integer program. Due to the NP hard complexity of the mathematical model, three prioritized K-mean clustering hybrid GAs, by incorporating two new heuristic algorithms, are proposed. The efficiency of the algorithms... 

    Prioritized K-mean clustering hybrid GA for discounted fixed charge transportation problems

    , Article Computers and Industrial Engineering ; Volume 126 , 2018 , Pages 63-74 ; 03608352 (ISSN) Ghassemi Tari, F ; Hashemi, Z ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The problem of allocating different types of vehicles for transporting a set of products in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network involves a heterogeneous fleet of vehicles each with the given capacity and with a variable transportation cost and a fixed cost with a discounting mechanism. Due to nonlinearity of the discounting mechanism, a nonlinear mathematical programming model is developed. A prioritized K-mean clustering encoding is introduced to designate the distribution depots distances, their demands, and the vehicles’ capacity. Using this priority clustering, a heuristic routine is developed by which... 

    Improved charge collection efficiency of hollow sphere/nanoparticle composite TiO 2 electrodes for solid state dye sensitized solar cells

    , Article Current Applied Physics ; Volume 13, Issue 2 , March , 2013 , Pages 371-376 ; 15671739 (ISSN) Sadoughi, G ; Mohammadpour, R ; Irajizad, A ; Taghavinia, N ; Dadgostar, S ; Samadpour, M ; Tajabadi, F ; Sharif University of Technology
    2013
    Abstract
    The photoanodes of solid state dye sensitized solar cells (ss-DSCs) embedded with different contents of TiO 2 hollow spheres (HSs) were prepared and the photovoltaic performances were systematically characterized. TiO 2 hollow spheres were synthesized by a facile sacrificial templating method, grounded and added in different ratios to TiO 2 nanoparticle (NP) paste, from which composite HS/NP electrodes were fabricated. The composite photoanodes include hollow spheres of 300-700 nm with enhanced light scattering characteristics in visible range which leads to improved light absorption in conventional thin film electrodes of ss-DSC. By optimizing the amount of HSs in the paste, 40% improvement... 

    Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 27 , 2018 , Pages 15149-15154 ; 19327447 (ISSN) Yadav, P ; Turren Cruz, S. H ; Prochowicz, D ; Tavakoli, M. M ; Pandey, K ; Zakeeruddin, S. M ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Organic-inorganic perovskite solar cells (PSCs) have gained considerable attention owing to their impressive photovoltaic properties and simple device manufacturing. In general, PSC employs a perovskite absorber material sandwiched between an electron and hole selective transport layer optimized with respect to optimal band alignment, efficient charge collection, and low interfacial recombination. The interfaces between the perovskite absorber and respective selective contacts play a crucial role in determining photovoltaic performance and stability of PSCs. However, a fundamental understanding is lacking, and there is poor understanding in controlling the physical processes at the... 

    Multi-objective non-linear fixed charge transportation problem with multiple modes of transportation in crisp and interval environments

    , Article Applied Soft Computing Journal ; Volume 80 , 2019 , Pages 628-649 ; 15684946 (ISSN) Biswas, A ; Shaikh, A. A ; Akhavan Niaki, S. T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper aims to propose an approach based on NSGA-II for solving multi-objective non-linear fixed charge transportation problem with multiple modes of transport in crisp and interval environments. Certain modifications need to be made in the existing NSGA-II configuration to calculate the crowding distance of a solution in the interval environment. Besides, a crossover and a mutation scheme suitable for multiple modes of transportation are developed. In the end, a set of test problems are solved in both environments and some comparative studies are performed restricting the problem to only one mode of transport at a time. Finally, the results of the proposed algorithm are compared with... 

    Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: Good for photocatalysis, bad for electron transfer

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 50 , 2017 ; 00223727 (ISSN) Mohammadpour, R ; Sharif University of Technology
    Abstract
    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the... 

    Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers

    , Article Carbon ; Volume 126 , 2018 , Pages 208-214 ; 00086223 (ISSN) Nouri, E ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Inverted organometal halide perovskite solar cells of p-i-n architecture allow for the employment of inorganic components that ensure longer time stability than organic charge transporters. This has been demonstrated in the present work where devices were made by employing NiO/GO and Li-modified GO/TiOx as hole and electron transporters, respectively, in comparison with popular organic components, such as PEDOT:PSS and PCBM. Cells made in the FTO/PEDOT:PSS/Perovskite/PCBM/Al composition were 25% more efficient than cells made in the FTO/NiO/GO/Perovskite/GO-Li/TiOx/Al composition but the latter was markedly more stable than the former. Emphasis has been presently given to the... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells

    , Article Journal of Power Sources ; Volume 475 , 2020 Forouzandeh, M ; Behrouznejad, F ; Ghavaminia, E ; Khosroshahi, R ; Li, X ; Zhan, Y ; Liao, Y ; Ning, Z ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Perovskite solar cells (PSCs) have excellent photovoltaic properties. There are, however, challenges of materials cost and device stability to be solved before commercializing them. Utilizing low-cost inorganic hole transport materials (HTM) as a replacement for spiro-OMeTAD, and replacing the Au electrode with printable carbon could be important steps in this regard. For this purpose, CuInxGa1-xS2 (x = 1, 0.75, 0.5, 0.25, 0) nanoparticle layers are deposited as inorganic HTMs with carbon composite electrode as the back electrode. Photovoltaic properties of PSCs with CuInxGa1-xS2/Carbon hole collecting electrodes are studied by changing the In ratio in the HTM layer. Results from impedance... 

    Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers

    , Article Solar Energy ; Volume 208 , 2020 , Pages 697-707 Kazemzadeh Otoufi, M ; Ranjbar, M ; Kermanpur, A ; Taghavinia, N ; Minbashi, M ; Forouzandeh, M ; Ebadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In planar perovskite solar cells (PSCs), engineering the extraction and recombination of electron–hole pairs by modification of the electron transport layer (ETL)/perovskite interface is very vital for obtaining high performance. The main idea here is to improve properties of the TiO2/perovskite interface by inserting an ultra-thin layer (UTL) of WO3 or SnO2 with the thickness of less than 10 nm by RF magnetron sputtering method. The structural and electrical characteristics of the samples were tested by XRD, AFM, FE-SEM, Mott-Schottky analysis, UV–Vis spectroscopy, J-V characterization and electrochemical impedance spectroscopy (EIS). It was found that the bilayer structured ETLs exhibit... 

    Self-assembly, stability, and photoresponse of PbS quantum dot films capped with mixed halide perovskite ligands

    , Article Materials Research Bulletin ; Volume 147 , 2022 ; 00255408 (ISSN) Aynehband, S ; Mohammadi, M ; Poushimin, R ; Azar, M. H ; Nunzi, J. M ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The type of passivating ligands and the ligand exchange method influence the quality of lead sulfide quantum dot films. This imparts on the efficiency of optoelectronic devices. To get a compact arrangement of the nanocrystals in a thin film (⁓100 nm) via self-assembling, we used organic-inorganic perovskites with mixed halides for the solid-state exchange of oleic acid ligands on PbS QDs (⁓ 4 nm). Formamidinium lead halides FAPbIxBr3-x (x= 3,2,1,0) were used. X-ray spectroscopy shows that successful replacement of oleic acid with FA happens by short immersion of the films (2 min) in the solution. Transmission electron microscopy shows that nano-scale cracks, short-range ordering, and fusion... 

    Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides

    , Article Journal of Colloid and Interface Science ; Volume 606 , 2022 , Pages 2038-2050 ; 00219797 (ISSN) Ashkarran, A. A ; Hosseini, A ; Loloee, R ; Perry, G ; Lee, K. B ; Lund, M ; Ejtehadi, M. R ; Mahmoudi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    We report on charge transport across self-assembled monolayers (SAMs) of short tau peptides by probing the electron tunneling rates and quantum mechanical simulation. We measured the electron tunneling rates across SAMs of carboxyl-terminated linker molecules (C6H12O2S) and short cis-tau (CT) and trans-tau (TT) peptides, supported on template-stripped gold (AuTS) bottom electrode, with Eutectic Gallium-Indium (EGaIn)(EGaIn) top electrode. Measurements of the current density across thousands of AuTS/linker/tau//Ga2O3/EGaIn single-molecule junctions show that the tunneling current across CT peptide is one order of magnitude lower than that of TT peptide. Quantum mechanical simulation... 

    Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers

    , Article Nano Letters ; Volume 10, Issue 5 , April , 2010 , Pages 1632-1638 ; 15306984 (ISSN) Ghadiri, E ; Taghavinia, N ; Zakeeruddin, S. M ; Grätzel, M ; Moser, J. E ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2 hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion...