Loading...
Search for: charging-ratios
0.003 seconds

    Determining the muon charge ratio using an experimental measurements and the CORSIKA simulation code

    , Article Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ; Volume 945 , 2019 ; 01689002 (ISSN) Bahmanabadi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The muon charge ratio contains important information about the flux of atmospheric neutrinos and the hadronic interactions. Using a cosmic ray telescope, the atmospheric muon charge ratio has been studied. The result of this experiment is compared with simulation results using the CORSIKA code. © 2019 Elsevier B.V  

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Experimental investigation of thermal resistance of a ferrofluidic closed-loop pulsating heat pipe

    , Article Heat Transfer Engineering ; Vol. 35, issue. 1 , 2014 , pp. 25-33 ; ISSN: 01457632 Mohammadi, M ; Mohammadi, M ; Ghahremani, A. R ; Shafii, M. B ; Mohammadi, N ; Sharif University of Technology
    Abstract
    For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and... 

    Experimental studies of positive and negative atmospheric muons with a cosmic rays telescope

    , Article Astroparticle Physics ; Volume 24, Issue 3 , 2005 , Pages 183-190 ; 09276505 (ISSN) Bahmanabadi, M ; Khakian Ghomi, M ; Sheidaei, F ; Sharif University of Technology
    2005
    Abstract
    An experiment has been developed for the measurement of the muon charge ratio (ratio of positive to negative muons) in the cosmic ray flux in energy range 0.236-0.242 GeV. The muon charge ratio is found to be 1.35 ± 0.10 with a mean zenith angle of 32° ± 5°. Meanwhile, the distributions of muons in zenith (θ) and azimuth angles have been studied. A cosnθ distribution with n = 1.95 ± 0.13 has been obtained. An asymmetry has been observed in East-West directions because of geomagnetic field. © 2005 Elsevier B.V. All rights reserved  

    Experimental investigation of an open loop pulsating heat pipe using ferrofluid

    , Article ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012 ; 2012 , Pages 175-184 ; 9780791854778 (ISBN) Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Saimak, K. H ; Sharif University of Technology
    Abstract
    The present work investigates the thermal performance of a five turn Open Loop Pulsating Heat Pipe (OLPHP). The effects of working fluid namely water and ferrofluid, heat input, ferrofluid concentration, charging ratio, and orientation will be considered. Experimental results show that using ferrofluids can enhance the thermal performance in comparison with the case of distilled water. In addition, applying a magnetic field on the OLPHP charged with ferrofluid reduces its thermal resistance. Variation of the ferrofluid concentration results in different thermal performance of the OLPHP. Best charging ratio for the distilled water and ferrofluid without magnetic field is 60 % in most of the... 

    Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid)

    , Article Journal of Heat Transfer ; Volume 134, Issue 1 , 2012 ; 00221481 (ISSN) Mohammadi, M ; Mohammadi, M ; Shafii, M. B ; Sharif University of Technology
    Abstract
    In this work, a four-turn pulsating heat pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability to obtain various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (40% and 70%), heat input (35, 45, 55, 65, 75, and 85 W), orientation (horizontal and vertical heat mode), ferrofluid volumetric concentration (2.5% and 7%), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water-based ferrofluid reduced the thermal resistance of PHP in all orientations. In the presence of a... 

    Experimental study of the startup performance of ferrofluidic open loop Pulsating Heat Pipes

    , Article ASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012, Rio Grande, 8 July 2012 through 12 July 2012 ; Volume 2 , 2012 , Pages 585-591 ; 9780791844786 (ISBN) Maziar, M ; Mehdi, T ; Siamak, K. H ; Mohammad Hassan, S ; Hossein, A ; Mohammad Behshad, S ; Sharif University of Technology
    2012
    Abstract
    Pulsating Heat Pipes (PHPs) are new and promising heat transfer devices. To implement the novel idea to vary the startup performance of a PHP using ferrofluid with and without the application of magnetic field, an experimental investigation is conducted. The effects of several important parameters including working fluid, charging ratio, heat input, ferrofluid concentration, internal pressure, and application of magnetic field on the startup performance of Open Loop Pulsating Heat Pipes (Open Loop PHPs) have been considered and described in detail. Obtained results show that using ferrofluid instead of distilled water can improve the startup performance of PHPs in certain conditions.... 

    Experimental study of the effects of ferrofluid on thermal performance of a pulsating heat pipe

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 435-440 ; 9780791844632 (ISBN) Maziar, M ; Mohammad, M ; Amir, R. G ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    In this work, a four-turn Pulsating Heat Pipe (PHP) is fabricated and tested experimentally. The novelty of the present PHP is the capability of obtaining various thermal performances at a specific heat input by changing the magnetic field. The effects of working fluid (water and ferrofluid), charging ratio (25%, 40%, and 55%), heat input (25, 35, 45, 55, 65, 75, and 85 W), orientation (vertical and horizontal heat mode), and magnetic field on the thermal performance of PHPs are investigated. The results showed that applying the magnetic field on the water based ferrofluid reduced the thermal resistance of PHP by a factor of 40.5% and 38.3% in comparison with the pure water case for the... 

    Measurement of the atmospheric muon charge ratio by using a cosmic ray telescope

    , Article Proceedings of the 32nd International Cosmic Ray Conference, ICRC 2011, 11 August 2011 through 18 August 2011, Beijing ; Volume 4 , August , 2011 , Pages 30-33 Abdollahi, S ; Bahmanabadi, M ; Purmohammad, D ; Mortazavi Moghaddam, S ; China Center of Advanced Science and Technology (CCAST); Chinese Academy of Sciences (CAS); Institute of High Energy Physics (IHEP); National Natural Science Foundation of China (NSFC) ; Sharif University of Technology
    Institute of High Energy Physics  2011
    Abstract
    The charge ratio of cosmic muons has important information in both "the atmospheric neutrinos anomaly" and "the hadronic interactions". We measured the muon charge ratio (Rμ = N μ+/Nμ-) in the cosmic rays flux at the momenta range 0.76-1.60 GeV/c at Sharif University of Technology in Tehran (35°43′N, 51°20′E) and 1200 m above sea level (890 gcm -2) by using a cosmic ray telescope. We used the delayed coincidence method based on reduced mean life time of negative muon due to nuclear capture in matter. By finding Rμ in different time intervals, we indicated 3 week time interval is proper to obtain Rμ and in this time interval, Rμ = 1.18±0.03. So we compared the experimental data to predictions... 

    Simultaneous alpha and gamma discrimination with a phoswich detector using a rise time method and an artificial neural network method

    , Article Applied Radiation and Isotopes ; Volume 154 , 2019 ; 09698043 (ISSN) Panahi, R ; Feghhi, S. A. H ; Moghadam, S. R ; Zamzamian, S. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    We used two digital methods—rise time discrimination (RTD) and an artificial neural network (ANN)—to simultaneously discriminate alpha particles and gamma rays detected by a phoswich detector (50 μm BC-400 coupled to 3 mm CsI(Tl)). The results for 10,000 pulses discriminated by the RTD method showed that the rise time distribution of the pulses is rather vast (between 200 and 800 ns for gamma rays and less than 40 ns for alpha particles). The same result was also observed in the dual-parameter diagram (pulse rise time versus area under the pulse) for an 241Am source. Then, as another approach, three pulse features—rise time, pulse height ratio, and charge ratio—were extracted from 2000...