Loading...
Search for: charpy-impact-testing
0.005 seconds

    Microstructure, fractography, and mechanical properties of hardox 500 steel tig-welded joints by using different filler weld wires

    , Article Materials ; Volume 15, Issue 22 , 2022 ; 19961944 (ISSN) Zuo, Z ; Haowei, M ; Yarigarravesh, M ; Assari, A. H ; Tayyebi, M ; Tayebi, M ; Hamawandi, B ; Sharif University of Technology
    MDPI  2022
    Abstract
    This paper deals with the effects of three low-carbon steel filler metals consisting of ferritic and austenitic phases on the weld joints of the tungsten inert gas (TIG) welding of Hardox 500 steel. The correlation between the microstructure and mechanical properties of the weld joints was investigated. For this purpose, macro and microstructure were examined, and then microhardness, tensile, impact, and fracture toughness tests were carried out to analyze the mechanical properties of joints. The results of optical microscopy (OM) images showed that the weld zones (WZ) of all three welds were composed of different ferritic morphologies, including allotriomorphic ferrite, Widmanstätten... 

    Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures

    , Article Composites Part B: Engineering ; Volume 157 , 2019 , Pages 76-99 ; 13598368 (ISSN) Bazli, M ; Ashrafi, H ; Jafari, A ; Zhao, X.-L ; Gholipour, H ; Oskouei, A. V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study investigates the flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures. The effect of fibre's length and orientation, laminate's thickness, and exposure time is studied. A total number of 540 tests in terms of three-point bending and Charpy impact tests were conducted to obtain the mechanical properties. In addition, SEM analyses were carried out to investigate the degradation mechanisms. Finally, statistical study was conducted to investigate the contribution of each variable and develop probabilistic models using ANOVA and linear Bayesian regression method. The results showed that generally the flexural and impact properties of GFRP laminates... 

    Failure analysis of bolt connections in fired heater of a petrochemical unit

    , Article Engineering Failure Analysis ; Volume 92 , 2018 , Pages 327-342 ; 13506307 (ISSN) Farrahi, G. H ; Chamani, M ; Reza Kashyzadeh, K ; Mostafazade, A ; Mahmoudi, A. H ; Afshin, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The main function of a fired heater in a petrochemical site is to produce supersaturated steam. Due to extremely difficult working conditions and high temperatures, there is a very high probability of failures in different parts of a fired heater. In the fired heater under study, tube guides are frequently damaged due to malfunctions and fractures in bolt connections. To investigate the nature of such fractures, Computational Fluid Dynamics (CFD), Finite Element (FE) method, Charpy impact test and fractography were used. To obtain the temperature of various components of the fired heater, a CFD analysis was carried out by considering the combustion process and modeling the central and side... 

    Influence of four wires tandem submerged arc welding process on heat affected zone properties in high strength pipeline steel

    , Article Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies, MIMT 2010, 22 January 2010 through 24 January 2010 ; 2010 , Pages 85-89 ; 9780791859544 (ISBN) Moeinifar, S ; Kokabi, A. H ; Madaah Hosseini, H. R ; Shang, C. J ; Hui, G ; Wei, L. Z ; Sharif University of Technology
    2010
    Abstract
    The objective of this investigation was to provide a detailed evaluation of the heat affected zone properties of a high-strength pipeline steel. The X80 high-strength low-alloy microalloyed steel was supplied as a hot rolled plate with accelerated cooling. The four-wire tandem submerged arc welding process with different heat input was used to generate welded joints. The microstructure of the heat affected zone depended on heat input values. M/A constituent appeared in the microstructure of HAZ region for all of the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. Charpy impact specimens were notched in four locations: FL (fusion line), FL+1mm, FL+2mm... 

    Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel

    , Article Journal of Materials Processing Technology ; Volume 211, Issue 3 , 2011 , Pages 368-375 ; 09240136 (ISSN) Moeinifar, S ; Kokabi, A. H ; Hosseini, H. R. M ; Sharif University of Technology
    Abstract
    The influence of thermal cycles on the properties of the coarse grained heat affected zone in X80 microalloyed steel has been investigated. The thermal simulated involved heating the X80 steel specimens to the peak temperature of 1400 °C, with different cooling rates. The four-wire tandem submerged arc welding process, with different heat input values, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between the bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat... 

    Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones

    , Article Materials and Design ; Volume 31, Issue 6 , June , 2010 , Pages 2948-2955 ; 02641275 (ISSN) Moeinifar, S ; Kokabi, A. H ; Madaah Hosseini, H. R ; Sharif University of Technology
    2010
    Abstract
    The objective of this paper is to study the influence of the second peak temperature during real and simulated welding on properties of the subcritically (S), intercritically (IC) and supercritically (SC) reheated coarse grained heat affected (CGHAZ) zones. The X80 high strength pipeline microalloyed steel was subject to processing in a double-pass tandem submerged arc welding process with total heat input of 6.98 kJ/mm and thermal cycles to simulate microstructure of reheated CGHAZ zones. This involved heating to a first peak temperature (TP1) of 1400 °C, then reheating to different second peak temperatures (TP2) of 700, 800 and 900 °C with a constant cooling rate of 3.75 °C/s. Toughness of...